MathsGeeks

1.

$$
f(x)=\frac{1}{\sqrt{(4+x)}}, \quad|x|<4
$$

Find the binomial expansion of $f(x)$ in ascending powers of x, up to and including the term in x^{3}. Give each coefficient as a simplified fraction.
1.

Always ensure the brackets start with a 1 so bring the 4 outside.
Using

$$
\begin{aligned}
& f(x)=(4+x)^{-\frac{1}{2}} \\
& f(x)=4^{-\frac{1}{2}}\left(1+\frac{x}{4}\right)^{-\frac{1}{2}} \\
& (1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+ \\
& f(x)=4^{-\frac{1}{2}}\left(1-\frac{1}{2}\left(\frac{x}{4}\right)+\frac{-\frac{1}{2} \cdot-\frac{3}{2}}{2}\left(\frac{x}{4}\right)^{2}+\frac{-\frac{1}{2} \cdot-\frac{3}{2} \cdot-\frac{5}{2}}{3 \times 2}\left(\frac{x}{4}\right)^{3}+\right) \\
& =\frac{1}{2}\left(1-\frac{x}{8}+\frac{3}{8}\left(\frac{x}{4}\right)^{2}-\frac{5}{16}\left(\frac{x}{4}\right)^{3}+. .\right) \\
& =\frac{1}{2}\left(1-\frac{x}{8}+\frac{3}{128} x^{2}-\frac{5}{1024} x^{3}+. .\right) \\
& =\frac{1}{2}-\frac{x}{16}+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3}+. .
\end{aligned}
$$

2. Figure 1 shows the finite region R bounded by the x-axis, the y-axis and the curve with equation $y=3 \cos \left(\frac{x}{3}\right), 0 \leq x \leq \frac{3 \pi}{2}$

The table shows corresponding values of x and y for $y=3 \cos \left(\frac{x}{3}\right)$

x	0	$\frac{3 \pi}{8}$	$\frac{3 \pi}{4}$	$\frac{9 \pi}{8}$	$\frac{3 \pi}{2}$
y	3	2.77164	2.12132		0

(a) Complete the table above giving the missing value of \boldsymbol{y} to 5 decimal places.
(b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.
(c) Use integration to find the exact area of R.

2a) Simply put the value into the formula.

$$
y=3 \cos \left(\frac{9 \pi}{8} \cdot \frac{1}{3}\right)=1.14805(5 . d \cdot p)
$$

Calculator in radians.

MathsGeeks

b) Using

$$
y \approx \frac{h}{2}\left\{y_{0}+y_{n}+2\left(y_{1}+y_{2} \ldots . y_{n-1}\right)\right\}
$$

$$
h=\frac{3 \pi}{8}-0=\frac{3 \pi}{8} \quad y \approx \frac{3 \pi}{16}\{3+0+2(2.77164+2.12132+1.14805)\}=8.884(3 . d . p)
$$

c) $\boldsymbol{y}=\mathbf{3} \cos \left(\frac{x}{3}\right) \quad R=3 \int_{0}^{\frac{3 \pi}{2}} \cos \left(\frac{x}{3}\right) d x=3\left[\frac{1}{1 / 3} \sin \frac{x}{3}\right]_{0}^{\frac{3 \pi}{2}}=9 \sin \frac{\pi}{2}=9$
3.

$$
f(x)=\frac{4-2 x}{(2 x+1)(x+1)(x+3)}=\frac{A}{2 x+1}+\frac{B}{x+1}+\frac{C}{x+3}
$$

(a) Find the values of the constants A, B and C.
(b) (i) Hence find $\int f(x) d x$.
(ii) Find $\int_{0}^{2} f(x) d x$ in the form $1 n k$, where k is a constant.
$\begin{aligned} & \text { 3a) Find common } \\ & \text { denominator for RHS }\end{aligned}=\frac{A(x+1)(x+3)+B(2 x+1)(x+3)+C(2 x+1)(x+1)}{(2 x+1)(x+1)(x+3)}$
Take $x=-\frac{1}{2}$ to get $\quad 4+2\left(\frac{1}{2}\right)=A\left(\frac{1}{2}\right)\left(\frac{5}{2}\right) \quad A=4$
rid of $B \& C$
Take $x=-1$ to get $\quad 4+2=B(-1)(2) \quad B=-3$
rid of A and C
Take $x=-3$ to get $\quad 4+6=C(-5)(-2) \quad C=1$
rid of A and B
b)

$$
\begin{aligned}
& \int f(x) d x=\int \frac{4}{2 x+1}-\frac{3}{x+1}+\frac{1}{x+3} d x \\
& =4\left(\frac{1}{2}\right) \ln (2 x+1)-3 \ln (x+1)+\ln (x+3)+\ln k \\
& =\ln (2 x+1)^{2}-\ln (x+1)^{3}+\ln (x+3)+\ln k
\end{aligned}
$$

$$
=\ln \frac{k(2 x+1)^{2}(x+3)}{(x+1)^{3}}
$$

c) $\int_{0}^{2} f(x) d x$

$$
\begin{aligned}
& =\ln \frac{(4+1)^{2}(2+3)}{(2+1)^{3}}-\ln \frac{(0+1)^{2}(0+3)}{(0+1)^{3}} \\
& =\ln \frac{(5)^{3}}{27}-\ln 3=\ln \frac{125}{81}
\end{aligned}
$$

4. The curve C has the equation

$$
y e^{-2 x}=2 x+y^{2}
$$

Page 2 of 7
2009-June-C4-Edexcel
Copyright@2012 Prior Kain Ltd

MathsGeeks

(a) Find $\frac{d y}{d x}$ in terms of x and y.

The point P on C has coordinates (0,1).
(b) Find the equation of the normal to C at P, giving your answer in the form $a x+b y+c=$ 0 , where a, b and c are integers.

4a) Use differentiation by parts and differentiate y with $\frac{d y}{d x} e^{-2 x}-2 e^{-2 x} y=2+2 y \frac{d y}{d x}$ respect to itself and multiple y
by $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d y}{d x} e^{-2 x}-2 y \frac{d y}{d x}=2 e^{-2 x} y+2 \\
& \frac{d y}{d x}\left(e^{-2 x}-2 y\right)=2 e^{-2 x} y+2 \\
& \frac{d y}{d x}=\frac{2\left(e^{-2 x} y+1\right)}{\left(e^{-2 x}-2 y\right)}
\end{aligned}
$$

B) For normal $\frac{d y}{d x}=-\frac{1}{m}$. Find $\quad \frac{d y}{d x}=\frac{2\left(e^{0}+1\right)}{\left(e^{0}-2\right)}=-4 \quad m=\frac{1}{4}$
$\frac{d y}{d x}$ at $\mathrm{P}(0,1)$

$$
\text { Therefore } \quad y=\frac{1}{4} x+c
$$

Put $P(0,1)$

Multiple by 4

$$
\begin{aligned}
& 1=0+c \quad c=1 \quad y=\frac{1}{4} x+1 \\
& 4 y=x+4 \quad 0=x-4 y+4
\end{aligned}
$$

5. Figure $\mathbf{2}$ shows a sketch of the curve with parametric equations

$$
x=2 \cos 2 t, y=6 \sin t, \quad 0 \leq t \leq \frac{\pi}{2}
$$

(a) Find the gradient of the curve at the point where $t=\frac{\pi}{3}$.
(b) Find a cartesian equation of the curve in the form

$$
y=f(x),-k \leq x \leq k
$$

stating the value of the constant k.
(c) Write down the range of $f(x)$.

5a) Using

$$
\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}
$$

$$
\frac{d y}{d t}=6 \cos t
$$

MathsGeeks

$$
\frac{d x}{d t}=-4 \sin 2 t
$$

Therefore

$$
\frac{d y}{d x}=\frac{6 \cos t}{-4 \sin 2 t}=-\frac{3 \cos t}{2 \sin 2 t}=-\frac{3}{2 \sin t}
$$

At $t=\frac{\pi}{3}$

$$
\frac{d y}{d x}=-\frac{3}{2 \sin \frac{\pi}{3}}=-\frac{\sqrt{3}}{2}
$$

b) $x=2 \cos 2 t, y=6 \sin t \quad \frac{y}{6}=\sin t \quad \cos 2 t=\frac{x}{2}=\cos ^{2} t-\sin ^{2} t=\left(1-\sin ^{2} t\right)-\sin ^{2} t$

$$
\frac{x}{2}=1-2 \sin ^{2} t=1-2\left(\frac{y}{6}\right)^{2}
$$

$$
\frac{x}{2}=1-2\left(\frac{y}{6}\right)^{2} \quad x=2-\frac{y^{2}}{9} \quad 9 x=18-y^{2}
$$

Put in limits in t to find limits in x .
$\left.y^{2}=18-9 x \quad y=\sqrt{18-9 x}=3 \sqrt{(2}-x\right)$
$x=2 \cos 2 t$ for $0 \leq t \leq \frac{\pi}{2} \quad-2 \leq x \leq 2$
c)For $0 \leq t \leq \frac{\pi}{2}$ find y

$$
y=6 \sin t \quad 0 \leq y \leq 6 \quad 0 \leq f(x) \leq 6
$$

6. (a) Find $\int \sqrt{ }(5-x) d x$.

Figure 3 shows a sketch of the curve with equation

$$
y=(x-1) \sqrt{ }(5-x), \quad 1 \leq x \leq 5
$$

(b) (i) Using integration by parts, or otherwise, find

$$
\begin{equation*}
\int(x-1) \sqrt{ }(5-x) d x \tag{4}
\end{equation*}
$$

(ii) Hence find

$$
\int_{1}^{5}(x-1) \sqrt{ }(5-x) d x
$$

(2)

6 a) Using

$$
\frac{1}{n+1} x^{n+1}
$$

$$
\int \sqrt{5-x} d x=\int(5-x)^{\frac{1}{2}} d x=-\frac{1}{3 / 2}(5-x)^{\frac{3}{2}}+C
$$

$$
=-\frac{2}{3}(5-x)^{\frac{3}{2}}+C
$$

b) (i) Using

$$
\int(x-1) \sqrt{ }(5-x) d x
$$

$$
\begin{aligned}
& \qquad u v-\int v \frac{d u}{d x} d x \\
& \text { Page } 4 \text { of } 7 \\
& \text { 2009-June-C4-Edexcel } \\
& \text { Copyright©2012 Prior Kain Ltd }
\end{aligned}
$$

$$
\begin{aligned}
& u=x-1 \quad \frac{d u}{d x}=1 \quad \frac{d v}{d x}=\sqrt{5-x} \quad v=-\frac{2}{3}(5-x)^{\frac{3}{2}} \\
& =-\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}}+\frac{2}{3} \int(5-x)^{\frac{3}{2}} d x
\end{aligned}
$$

MathsGeeks

$$
\begin{aligned}
& =-\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}}-\frac{2}{3} \cdot \frac{2}{5}(5-x)^{\frac{5}{2}}+K \\
& =-\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}}-\frac{4}{15}(5-x)^{\frac{5}{2}}+K \\
& =\left(-\frac{2}{3}(4)(0)^{\frac{3}{2}}-\frac{4}{15}(0)^{\frac{5}{2}}\right)-\left(-\frac{2}{3}(0)(4)^{\frac{3}{2}}\right. \\
& =0-0-0+\frac{4}{15}(2)^{5}=\frac{128}{15}
\end{aligned}
$$

$$
\text { (ii) } \int_{1}^{5}(x-1) \sqrt{ }(5-x) d x \quad=\left(-\frac{2}{3}(4)(0)^{\frac{3}{2}}-\frac{4}{15}(0)^{\frac{5}{2}}\right)-\left(-\frac{2}{3}(0)(4)^{\frac{3}{2}}-\frac{4}{15}(4)^{\frac{5}{2}}\right.
$$

7. Relative to a fixed origin O, the point A has position vector $(8 i+13 j-2 k)$, the point B has position vector ($\mathbf{1 0 i} \mathbf{+ 1 4 j}-4 k$), and the point C has position vector ($9 i+9 j+6 k$).

The line I passes through the points A and B.
(a) Find a vector equation for the line I.
(b) Find CB.
(c) Find the size of the acute angle between the line segment $C B$ and the line I, giving your answer in degrees to 1 decimal place.
(d) Find the shortest distance from the point C to the line I.

The point X lies on I. Given that the vector $C X$ is perpendicular to I,
(e) find the area of the triangle CXB, giving your answer to 3 significant figures.

7 a) The vector equation of line uses any point on the line and then the direction vector AB .
b) $C B=b-c$

$$
C B=\sqrt{1^{2}+5^{2}+10^{2}}=\sqrt{126}=11.2
$$

c) Use

$$
\cos \theta=\frac{a \cdot b}{|a||b|}
$$

$$
\begin{aligned}
& A B=b-a=10 i+14 j-4 k-8 i-13 j+2 k=2 i+j-2 k \\
& r=(8 i+13 j-2 k)+k(2 i+j-2 k)
\end{aligned}
$$

$$
\boldsymbol{C B}=(10 \mathrm{i}+14 \mathrm{j}-4 \mathrm{k})-(9 \mathrm{i}+9 \mathrm{j}+6 \mathrm{k})=\mathrm{i}+5 \mathrm{j}-10 \mathrm{k}
$$

$$
=\frac{3}{\sqrt{14}}
$$

$$
\theta=\cos ^{-1}\left(\frac{3}{\sqrt{14}}\right)=36.699=36.7^{\circ}
$$

d) Recognise the right angled triangle. They are leading through this!
e) The same triangle where $B X$
is base and $X C$ is height. Use Pythagoras to find $B X$
Using

$$
\text { Area }=\frac{1}{2} \text { base } \times \text { height }
$$

8 (a) Using the identity $\cos 2 \theta=1-2 \sin ^{2} \theta$, find $\int \sin ^{2} \theta d \theta$.

Figure 4 shows part of the curve C with parametric equations

$$
x=\tan \theta, \quad y=2 \sin 2 \theta, \quad 0 \leq \theta<\frac{\pi}{2}
$$

The finite shaded region S shown in Figure 4 is bounded by C, the line $x=\frac{1}{\sqrt{3}}$ and the x axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.
(b) Show that the volume of the solid of revolution formed is given by the integral

$$
k \int_{0}^{\frac{\pi}{6}} \sin ^{2} \theta d \theta
$$

where k is a constant.
(c) Hence find the exact value for this volume, giving your answer in the form $p \pi^{2}+q \pi \sqrt{ } 3$, where p and q are constants.

8a), find $\int \sin ^{2} \theta d \theta$.
Therefore

$$
\begin{aligned}
& \cos 2 \theta=1-2 \sin ^{2} \theta \\
& \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \\
& \int \sin ^{2} \theta d \theta=\int \frac{1}{2}(1-\cos 2 \theta) d \theta=\frac{1}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)+C
\end{aligned}
$$

b) Volume of revolution is
$\pi \int y^{2} d x$
$x=\tan \theta \quad \frac{d x}{d \theta}=\sec ^{2} \theta \quad d x=\sec ^{2} \theta d \theta$
Using

$$
\sin 2 x=2 \sin x \cos x
$$

$$
V o l=4 \pi \int \sin ^{2} 2 \theta \sec ^{2} \theta d \theta
$$

$$
V o l=16 \pi \int \sin ^{2} \theta \cos ^{2} \theta \sec ^{2} \theta d \theta=16 \pi \int \sin ^{2} \theta d \theta
$$

When

When

$$
x=\frac{1}{\sqrt{3}} \theta=\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}
$$

$x=0 \theta=\tan ^{-1} 0=0$

Vol $=16 \pi \int_{0}^{\frac{\pi}{6}} \sin ^{2} \theta d \theta$
c)
$\left.=16 \pi \int_{0}^{\frac{\pi}{6}} \sin ^{2} \theta d \theta=\frac{16 \pi}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)\right]_{0}^{\frac{\pi}{6}}$

$$
\begin{aligned}
& \left.\left.=8 \pi\left(\frac{\pi}{6}-\frac{1}{2} \sin \frac{2 \pi}{6}\right)\right]-8 \pi\left(0-\frac{1}{2} \sin 0\right)\right]_{0}^{\frac{\pi}{6}}=8 \pi\left(\frac{\pi}{6}-\frac{1}{2} \times \frac{\sqrt{3}}{2}\right) \\
& =\frac{4}{3} \pi^{2}-2 \pi \sqrt{3}
\end{aligned}
$$

