MathsGeeks

1.

$$
f(x)=(3+2 x)^{-3}, \quad|x|<\frac{3}{2}
$$

Find the binomial expansion of $f(x)$ in ascending powers of x, up to and including the term in $x^{\mathbf{3}}$. Give each coefficient as a simplified fraction.

1. Always ensure the
brackets start with a 1 so bring the 3 outside.
Using

$$
\begin{aligned}
& f(x)=3^{-3}\left(1+\frac{2 x}{3}\right)^{-3} \\
& (1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+ \\
& f(x)=3^{-3}\left(1-3\left(\frac{2 x}{3}\right)+\frac{-3 \times-4}{2}\left(\frac{2 x}{3}\right)^{2}+\frac{-3 \times-4 \times-5}{3 \times 2}\left(\frac{2 x}{3}\right)^{3}+\cdots\right) \\
& f(x)=3^{-3}\left(1-2 x+\frac{24}{9} x^{2}-\frac{80}{27} x^{3}+\cdots\right) \\
& \left.f(x)=\frac{1}{27}-\frac{2}{27} x+\frac{8}{81} x^{2}-\frac{80}{729} x^{3}+\cdots\right)
\end{aligned}
$$

2. Use the substitution $u=2^{x}$ to find the exact value of

$$
\begin{equation*}
\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} d x \tag{6}
\end{equation*}
$$

2. If $u=2^{x} \quad \ln u=x \ln 2$

$$
\frac{1}{\ln 2} \times \frac{1}{u} d u=d x
$$

$u=2^{x} \quad \frac{1}{u} d u=\ln 2 d x$
When $x=1 u=2^{1}=2$ $x=0 u=2^{0}=1$
$\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} d x=\frac{1}{\ln 2} \int_{1}^{2} \frac{u}{(u+1)^{2}} \frac{1}{u} d u=\frac{1}{\ln 2} \int_{1}^{2} \frac{1}{(u+1)^{2}} d u$

Using

$$
\begin{aligned}
\frac{1}{n+1} x^{n+1} & \left.=\frac{1}{\ln 2} \int_{1}^{2}(u+1)^{-2} d u=\frac{1}{\ln 2}(-1)(u+1)^{-1}\right]_{1}^{2} \\
& =-\frac{1}{\ln 2} \times \frac{1}{3}+\frac{1}{\ln 2} \times \frac{1}{2}=\frac{1}{\ln 2}\left(\frac{3-2}{6}\right)=\frac{1}{6 \ln 2}
\end{aligned}
$$

3. (a) Find $\int x \cos 2 x d x$.
(b) Hence, using the identity $\cos 2 x=2 \cos ^{2} x-1$, deduce $\int x \cos ^{2} x d x$.
(3)

3 a) Using Integration by parts

$$
=u v-\int v \frac{d u}{d x} d x
$$

$$
u=x \quad \frac{d u}{d x}=1 \quad \frac{d v}{d x}=\cos 2 x \quad v=\frac{1}{2} \sin 2 x
$$

$$
\begin{aligned}
& =\frac{x}{2} \sin 2 x-\frac{1}{2} \int \sin 2 x d x \\
& =\frac{x}{2} \sin 2 x-\frac{1}{2} \cdot \frac{1}{2}-\cos 2 x+C
\end{aligned}
$$

Page 1 of 5
2007-June-C4-Edexcel
Copyright©2012 Prior Kain Ltd

MathsGeeks

b) Rearranges

$$
=\frac{x}{2} \sin 2 x+\frac{1}{4} \cos 2 x+C
$$

Therefore

$$
\begin{aligned}
& \cos 2 x=2 \cos ^{2} x-1 \\
& \frac{1}{2}(\cos 2 x+1)=\cos ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \int x \cos ^{2} x d x=\frac{1}{2} \int x \cos 2 x+x d x \\
& =\frac{1}{2}\left(\frac{x}{2} \sin 2 x+\frac{1}{4} \cos 2 x+\frac{x^{2}}{2}\right)+C \\
& =\frac{x}{4} \sin 2 x+\frac{1}{8} \cos 2 x+\frac{x^{2}}{4}+C
\end{aligned}
$$

4.

$$
\frac{2\left(4 x^{2}+1\right)}{(2 x+1)(2 x-1)} \equiv A+\frac{B}{(2 x+1)}+\frac{C}{(2 x-1)}
$$

(a) Find the values of the constants A, B and C.
(b) Hence show that the exact value of $\int_{1}^{2} \frac{2\left(4 x^{2}+1\right)}{(2 x+1)(2 x-1)} d x$, is $2+\ln k$ giving the value of the constant k.

4 a) Find common
denominators of LHS

$$
\begin{equation*}
\equiv \frac{A\left(4 x^{2}+1\right)+B(2 x-1)+C(2 x+1)}{(2 x+1)(2 x-1)} \tag{6}
\end{equation*}
$$

Compare x^{2} terms

$$
8 \equiv 4 A \quad A=2
$$

Let $\mathrm{x}=\frac{1}{2}$
$2(1+1) \equiv 2 C \quad C=2$
Let $x=-\frac{1}{2}$

$$
2(1+1) \equiv-2 B \quad B=-2
$$

$$
\frac{2\left(4 x^{2}+1\right)}{(2 x+1)(2 x-1)} \equiv 2-\frac{2}{(2 x+1)}+\frac{2}{(2 x-1)}
$$

b)

$$
\begin{aligned}
& \int_{1}^{2} \frac{2\left(4 x^{2}+1\right)}{(2 x+1)(2 x-1)} d x=\int_{1}^{2} 2-\frac{1}{(2 x+1)}+\frac{1}{(2 x-1)} d x \\
& \left.=2 x-\frac{2}{2} \ln (2 x+1)+\frac{2}{2} \ln (2 x-1)\right]_{1}^{2} \\
& \left.=2 x+\ln \frac{(2 x-1)}{(2 x+1)}\right]_{1}^{2}=4+\ln \frac{3}{5}-2-\ln \frac{1}{3} \\
& =2+\ln \frac{9}{5}
\end{aligned}
$$

5.

The line I_{1} has equation $r=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
The line I_{2} has equation $r=\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$
(a) Show that I_{1} and I_{2} do not meet.

The point A is on I_{1} where $\lambda=1$, and the point B is on I_{2} where $\mu=2$.
(b) Find the cosine of the acute angle between $A B$ and I_{1}.

MathsGeeks

5 a) Set up three equations and prove there is no values that work for all three.

$$
\begin{aligned}
\boldsymbol{r} & =\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
\boldsymbol{r} & =\left(\begin{array}{l}
1 \\
3 \\
6
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

First equation set up

Third equation check
Therefore they do not meet.
b) When $\lambda=1$

When $\mu=2$

$$
\begin{aligned}
& 1+\lambda=1+2 \mu \quad \lambda=2 \mu \\
& \lambda=3+\mu \quad \text { from above } 2 \mu=3+\mu \quad \mu=3 \quad \text { and } \lambda=6 \\
& -1=6-\mu \quad \mu=7 \neq 3
\end{aligned}
$$

$$
\boldsymbol{A}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+1\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
$$

$$
\boldsymbol{B}=\left(\begin{array}{l}
1 \\
3 \\
6
\end{array}\right)+2\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
5 \\
5 \\
4
\end{array}\right)
$$

Find $A B=b-a$

$$
A B=3 i+4 j+5 k
$$

Using

$$
\cos \theta=\frac{(3 i+4 j+5 k) \cdot(i+j)}{\left.\sqrt{\left(3^{2}\right.}+4^{2}+5^{2}\right) \cdot \sqrt{1^{2}}+1^{2}}=\frac{7}{\sqrt{50 \sqrt{2}}}=\frac{7}{10}
$$

6. A curve has parametric equations

$$
x=\tan ^{2} t \quad y=\sin t \quad 0<t<\frac{\pi}{2}
$$

(a) Find an expression for $\frac{d y}{d x}$ in terms of t. You need not simplify your answer.
(b) Find an equation of the tangent to the curve at the point where $t=\frac{\pi}{4}$.

Give your answer in the form $=a x+b$, where a and b are constants to be determined.
(c) Find a cartesian equation of the curve in the form $y^{2}=f(x)$.

6a)

$$
\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}
$$

$\frac{d y}{d t}=\operatorname{cost} \quad x^{\frac{1}{2}}=\operatorname{tant} \quad \frac{1}{2} x^{-\frac{1}{2}} d x=\sec ^{2} t d t \quad \frac{d x}{d t}=2 \sec ^{2} t \sqrt{x}$
b) Tangent is when

$$
\frac{d y}{d x}=m
$$

$$
\begin{aligned}
& \frac{d x}{d t}=2 \sec ^{2} t \tan t \\
& \frac{d y}{d x}=\frac{\cos t}{2 \sec ^{2} t \tan t}=\frac{\cos ^{3} t}{2 \tan t}=\frac{\cos ^{4} t}{2 \sin t}
\end{aligned}
$$

$\frac{d y}{d x}=m$

$$
\frac{d y}{d x}=m=\frac{\cos ^{4} \frac{\pi}{4}}{2 \sin \frac{\pi}{4}}=\frac{\sqrt{2}}{8} \quad y=\frac{\sqrt{2}}{8} x+C
$$

When $\mathrm{t}=\frac{\pi}{4} \quad x=\tan ^{2}\left(\frac{\pi}{4}\right)=1 \quad$ When $\mathrm{t}=\frac{\pi}{4} \quad y=\sin \mathrm{t}=\frac{\sqrt{ } 2}{2}$
Plug in to find C

$$
\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{8}+C \quad C=\frac{4 \sqrt{2}-2}{8}=C=\frac{3 \sqrt{2}}{8}
$$

$$
y=\frac{\sqrt{2}}{8} x+\frac{3 \sqrt{2}}{8}
$$

$$
\text { c) } x=\tan ^{2} t \quad y=\sin t \quad y^{2}=\sin ^{2} t \quad x=\tan ^{2} t=\frac{\sin ^{2} t}{\cos ^{2} t}=\frac{\sin ^{2} t}{1-\sin ^{2} t}=\frac{y^{2}}{1-y^{2}}
$$

MathsGeeks

$$
\begin{array}{ll}
x=\frac{y^{2}}{1-y^{2}} & x\left(1-y^{2}\right)=y^{2} \quad x-x y^{2}=y^{2} \\
x=y^{2}+x y^{2} & x=y^{2}(1+x) \\
\frac{x}{1+x}=y^{2} &
\end{array}
$$

7. Figure 1 shows part of the curve with equation $y=\sqrt{ }(\tan x)$. The finite region R, which is bounded by the curve, the x-axis and the line $x=\frac{\pi}{4}$, is shown shaded in Figure 1.
(a) Given that $y=\sqrt{ }(\tan x)$, complete the table with the values of y corresponding to $x=\frac{\pi}{16}, \frac{\pi}{8}, \frac{3 \pi}{16}$, giving your answers to 5 decimal places.

X	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3 \pi}{16}$	$\frac{\pi}{4}$
y	0	0.44600	0.64359	0.81742	1

(3)
(b) Use the trapezium rule with all the values of \boldsymbol{y} in the completed table to obtain an estimate for the area of the shaded region R, giving your answer to 4 decimal places.

The region R is rotated through 2π radians around the x-axis to generate a solid of revolution.
(c) Use integration to find an exact value for the volume of the solid generated.
a) Simply put the values into the calculator. Ensure calculator is in radians
b) Using

$$
\begin{aligned}
& y \approx \frac{h}{2}\left\{y_{0}+y_{n}+2\left(y_{1}+y_{2} \ldots . . y_{n-1}\right)\right\} \\
& y \approx \frac{\pi}{32}\{0+1+2(0.44600+0.64359+0.81742)\} \\
& y=0.4726(4 . \text { d.p) }
\end{aligned}
$$

$\mathrm{h}=\frac{\pi}{16}$
c) Using

$$
V o l=\pi \int y^{2} d x
$$

$$
\begin{aligned}
& \left.V o l=\pi \int_{0}^{\frac{\pi}{4}} \tan x d x=\ln \sec x\right]_{0}^{\frac{\pi}{4}}=\pi \ln \sec \frac{\pi}{4}-\pi \ln \sec 0 \\
& =-\pi \ln \cos \frac{\pi}{4}+\pi \ln \cos 0=-\pi \ln \frac{\sqrt{2}}{2}+\pi \ln 1=\pi \ln \frac{2}{\sqrt{2}}
\end{aligned}
$$

8. A population growth is modelled by the differential equation where P is the population, t is the time measured in days and k is a positive constant.

$$
\frac{d P}{d t}=k P
$$

Given that the initial population is P_{0},
(a) solve the differential equation, giving P in terms of P_{0}, k and t.

Given also that $\boldsymbol{k}=\mathbf{2 . 5}$,
(b) find the time taken, to the nearest minute, for the population to reach $\mathbf{2} P_{0}$.

In an improved model the differential equation is given as

$$
\frac{d P}{d t}=\lambda P \cos \lambda t
$$

Page 4 of 5

MathsGeeks

where P is the population, t is the time measured in days and is a positive constant.
Given, again, that the initial population is P_{0} and that time is measured in days, (c) solve the second differential equation, giving P in terms of P_{0}, and t.

Given also that $\lambda=2.5$,
(d) find the time taken, to the nearest minute, for the population to reach $2 P_{0}$ for the first time, using the improved model.
a) Separate terms on left and right.
$\int \frac{1}{P} d P=k \int d t$

When $t=0 \quad P=P_{0}$
b)

Taking natural logs of both sides
$\ln P=k t+C$
$\ln P_{0}=C$
$\ln P=k t+\ln P_{0}$
$\ln P-\ln P_{0}=k t$
$\ln \frac{P}{P_{0}}=k t \quad \frac{P}{P_{o}}=e^{k t} \quad P=P_{0} e^{k t}$
$2 P_{0}=P_{0} e^{2.5 t}$
$\ln 2=2.5 t \quad t=\frac{1}{2.5} \ln 2=0.2772588$ days
$=0.2772588 \times 24=6.654212 \mathrm{hrs}$
$=6 \mathrm{hrs}$ and 39 mins
c)

$$
\frac{d P}{d t}=\lambda P \cos \lambda t
$$

$\int \frac{1}{P} d P=\lambda \int \cos \lambda t d t$

When $t=0 \mathrm{P}=\mathrm{P}_{0}$
Therefore
d)

Taking natural logs

$$
\begin{aligned}
& \ln P=\frac{\lambda}{\lambda} \sin \lambda t+C \\
& \ln P_{0}=C \\
& \ln P=\sin \lambda t+\ln P_{0} \\
& \ln \frac{P}{P_{0}}=\sin \lambda t \\
& P=P_{0} e^{\sin \lambda t} \\
& 2 P_{0}=P_{0} e^{\sin 2.5 t} \\
& \ln 2=\sin 2.5 t \quad t=\frac{1}{2.5} \sin ^{-1}(\ln 2)=0.306338477 \text { days } \\
& t=0.306338477=441.127 \mathrm{mins}=7 h r s \text { and } 21 \mathrm{mins}
\end{aligned}
$$

