www.mathsgeeks.co.uk C4-Jan-Edexcel-2008

1. The curve shown in Figure 1 has equation $y = e^x \sqrt{sinx}$ $0 \le x \le \pi$. The finite region *R* bounded by the curve and the *x*-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $\frac{\pi}{2}$, giving your answers to 5 decimal places.

(2)

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places.

(4)

х	0	π	π	3π	π
		4	2	4	
У	0	1.84432	4.81048	8.87207	0

a)	Simply put the values of x into the formula in your calculator	PUT YOUR CALCULATOR IN RADIANS!
b)	Using	$y \approx \frac{h}{2} \{ y_0 + y_n + 2(y_1 + y_2 \dots y_{n-1}) \}$
$h = \frac{\pi}{4}$ -	$-0=\frac{\pi}{4}$	$y \approx \frac{\pi}{8} \{ 0 + 0 + 2(1.84432 + 4.81048 + 8.87207) \}$
		$y \approx 12.1948$ (4.d.p)

2. (a) Use the binomial theorem to expand

$$(8-3x)^{\frac{1}{3}}, \quad |x| < \frac{8}{3}$$

in ascending powers of x, up to and including the term in x^3 , giving each term as a simplified fraction.

(b) Use your expansion, with a suitable value of x, to obtain an approximation to $\sqrt[3]{7.7}$. Give your answer to 7 decimal places.

(2)

(5)

a) Bring 8 out
to ensure it
starts with a
1.
Using binomial
expansion
$$(8 - 3x)^{\frac{1}{3}} = 8^{\frac{1}{3}}(1 - \frac{3}{8}x)^{\frac{1}{3}}$$
$$(1 - \frac{3}{8}x)^{\frac{1}{3}}$$
$$(1 - \frac{3}{8}x)^{\frac{1}{3}}$$
$$(1 - \frac{3}{8}x)^{\frac{1}{3}}$$
$$(1 - \frac{3}{8}x)^{\frac{1}{3}}$$

Page **1** of **7** 2008-Jan-C4-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk

C4-Jan-Edexcel-2008

$$=8^{\frac{1}{3}}(1+\frac{1}{3}\left(-\frac{3}{8}x\right)+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)}{2}\left(-\frac{3}{8}x\right)^{2}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3\times 2}\left(-\frac{3}{8}x\right)^{3}$$

$$=2\left(1-\frac{1}{8}x-\frac{1}{64}x^{2}-\frac{5}{1536}x^{3}...\right)$$

$$=2-\frac{1}{4}x-\frac{1}{32}x^{2}-\frac{5}{768}x^{3}...$$
b) Always
$$8-3x=7.7 \quad x=0.1$$

$$8-3x=7.7 \quad x=0.1$$
Fill x=0.1 into
$$=2-\frac{1}{4}(0.1)-\frac{1}{32}(0.1)^{2}-\frac{5}{768}(0.1)^{3}=1.97468099=1.9746810 (7.d.p)$$

3. The curve shown in Figure 2 has equation

$$y=\frac{1}{2x+1}.$$

The finite region bounded by the curve, the x-axis and the lines x = a and x = b is shown shaded in Figure 2. This region is rotated through 360° about the x-axis to generate a solid of revolution. Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b.

(5)

Using

Using

$$Vol = \pi \int y^2 dx$$

$$Vol = \pi \int_a^b \frac{1}{(2x+1)^2} dx = \pi \int_a^b (2x+1)^{-2} dx$$

$$= \pi \left[\frac{1}{-1} (2x+1)^{-1} \cdot \frac{1}{2} \right]_a^b = -\frac{\pi}{2(2b+1)} + \frac{\pi}{2(2a+1)}$$

$$= \frac{\pi(-2a-1+2b+1)}{2(2b+1)(2a+1)} = \frac{\pi(b-a)}{(2b+1)(2a+1)}$$

4. (i) Find
$$\int \ln\left(\frac{x}{2}\right) dx$$
 (4)
(ii) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x \, dx$

(5)

 $u = \ln\left(\frac{x}{2}\right)$ $\frac{du}{dx} = \frac{2}{x}\left(\frac{1}{2}\right) = \frac{1}{x}$ $\frac{dv}{dx} = 1$ v = xa) To integrate lnx you integrate by parts. $=xln\frac{x}{2} - \int x.\frac{1}{x}dx = xln\frac{x}{2} - x + k$ Using $uv - \int v \frac{du}{dx} dx$

Page 2 of 7 2008-Jan-C4-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C4-Jan-Edexcel-2008

c) Always use the cos double angle formula to int $\cos^2 x$ or $\sin^2 x$.

double
tegrate
$$cos2x = cos^{2}x - sin^{2}x$$

$$cos2x = (1 - sin^{2}x) - sin^{2}x$$

$$cos2x = 1 - 2sin^{2}x$$

$$sin^{2}x = \frac{1}{2}(1 - cos2x)$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} sin^{2}x \, dx = \frac{1}{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 1 - cos2x \, dx$$

$$\frac{1}{2}\left[x - \frac{1}{2}sin2x\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{1}{2}\left(\frac{\pi}{2} - \frac{1}{2}sin\pi\right) - \frac{1}{2}\left(\frac{\pi}{4} - \frac{1}{2}sin\frac{\pi}{2}\right)$$

$$= \frac{\pi}{4} - \frac{\pi}{8} + \frac{1}{4} = \frac{\pi}{8} + \frac{1}{4}$$

- 5. A curve is described by the equation $x^3 - 4y^2 = 12xy.$
- (a) Find the coordinates of the two points on the curve where x = -8.
- (b) Find the gradient of the curve at each of these points.

(6)

(3)

a) Let x=-8		$(-8)^3 - 4y^2 = 12(-8)y$
		$(-8)^3 - 4y^2 = 12(-8)y$
Divide by 4		$0 = 4y^{2} - 96y + 512$ $0 = y^{2} - 24y + 128$
		0 = (y - 8)(y - 16)
Coordinates are		(-8,8) (-8,16)
x but remem differentiate and multiply differentiatio	y w.r.t itself by $\frac{dy}{dx}$. RHS is	$3x^{2} - 8y\frac{dy}{dx} = 12x\frac{dy}{dx} + 12y$ $3x^{2} - 12y = (12x + 8y)\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{3x^{2} - 12y}{12x + 8y}$ $\frac{dy}{dx} = \frac{3(-8)^{2} - 12(8)}{12(-8) + 8(8)} = \frac{192 - 96}{-96 + 64} = -3$
At (-8,16)		$\frac{dy}{dx} = \frac{3(-8)^2 - 12(16)}{12(-8) + 8(16)} = \frac{192 - 96}{-96 + 64} = 0$

6. The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line I_1 passes through the points A and B.

Page 3 of 7 2008-Jan-C4-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C4-Jan-Edexcel-2008

(a) Find the vector AB.

(b) Find a vector equation for the line.

A second line I_2 passes through the origin and is parallel to the vector i + k. The line meets the line I_1 at the point C.

(c) Find the acute angle between I_1 and I_2 .

(d) Find the position vector of the point C.

a)	AB = b - a = (3i + 4j + k) - (2i + 6j - k) = i - 2j + 2k
 b) A position on the line and direction vector. 	$r_1 = (2i + 6j - k) + t(i - 2j + 2k)$
c) Using $cos\theta = \frac{a.b}{ a b }$	$cos\theta = \frac{(i-2j+2k).(i+k)}{\sqrt{(1+4+4)}\sqrt{(1+1)}} = \frac{3}{3\sqrt{2}}$ $\theta = \frac{\pi}{4}$
	4
At C find s and t	$r_{2} = s(i+k)$ $r_{1} = (2i+6j-k) + t(i-2j+2k)$
Compare i, j and k	(i) $s = 2 + t$ (1) (j) $0 = 6 - 2t$ (2)
From (2)	(k) $s = -1 + 2t$ (3) t = 3
1011(2)	s = 5 from (1)
Therefore	s = -1 + 2(3) OC = 5i + 5k

7. The curve C has parametric equations

$$x = \ln(t+2)$$
, $y = \frac{1}{(t+1)}$, $t > -1$

The finite region *R* between the curve *C* and the *x*-axis, bounded by the lines with equations

 $x = \ln 2$ and $x = \ln 4$, is shown shaded in Figure 3.

(a) Show that the area of R is given by the integral

$$\int_0^2 \frac{1}{(t+1)(t+2)} dt$$

Page **4** of **7** 2008-Jan-C4-Edexcel Copyright©2012 Prior Kain Ltd (2)

(2)

(3)

(4)

(4)

www.mathsgeeks.co.uk C4-Jan-Edexcel-2008

- (b) Hence find an exact value for this area.
- (c) Find a cartesian equation of the curve C, in the form y = f(x).
- (d) State the domain of values for *x* for this curve.

(1)

(6)

(4)

a) $Area = \int y dx$ When x=ln 4, t=2, when x=ln2, t=0. Therefore	$\frac{dx}{dt} = \frac{1}{t+2}$ $Area = \int_0^2 \frac{1}{(t+1)(t+2)} dt$
 b) When you have two brackets at the bottom you often use partial fractions so 	$\frac{1}{(t+1)(t+2)} = \frac{A}{t+1} + \frac{B}{t+2}$
Therefore	1 = A(t+2) + B(t+1)
Compare parts	(t) $0 = A + B$ (1) (nos) $1 = 2A + B$ (2)
Subtract (2) from(1)	$-1 = -A \qquad A = 1, B = -1$
Integral is therefore	$Area = \int_0^2 \frac{1}{t+1} - \frac{1}{t+2} dt = \left[\ln(t+1) - \ln(t+2) \right]_0^2 = \ln \frac{t+1}{t+2} dt$
	$= \ln\frac{3}{4} - \ln\frac{1}{2} = \ln\frac{6}{4} = \ln\frac{3}{2}$
c) Find t in terms of x	$x = \ln(t+2)$ $e^x = t+2$
Substitute t back into y	$e^{x} - 2 = t$ $y = \frac{1}{(e^{x} - 1)}$
d) t>-1 therefore	$x > \ln(1) \qquad x > 0 \ x \in \mathbb{R}$

8. Liquid is pouring into a large vertical circular cylinder at a constant rate of 1600 cm³ s⁻¹ and is leaking out of a hole in the base, at a rate proportional to the square root of the height of the liquid already in the cylinder. The area of the circular cross section of the cylinder is 4000 cm².

(a) Show that at time *t* seconds, the height *h* cm of liquid in the cylinder satisfies the differential equation,

$$\frac{dh}{dt}=0.4-k\sqrt{h}$$

where *k* is a positive constant.

Page **5** of **7** 2008-Jan-C4-Edexcel Copyright©2012 Prior Kain Ltd (3)

www.mathsgeeks.co.uk C4-Jan-Edexcel-2008

When h = 25, water is leaking out of the hole at 400 cm³ s⁻¹.

(b) Show that *k* = 0.02

(c) Separate the variables of the differential equation

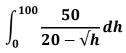
$$\frac{dh}{dt}=0.4-0.02\sqrt{h},$$

to show that the time taken to fill the cylinder from empty to a height of 100 cm is given by

$$\int_0^{100} \frac{50}{20-\sqrt{h}} dh$$

(2)

Using the substitution $H = (20 - x)^2$, or otherwise, (d) find the exact value of



(e) Hence find the time taken to fill the cylinder from empty to a height of 100 cm, giving your answer in minutes and seconds to the nearest second.

(1)

(6)

a) Vol of liquid = 1600 cm³
s⁻¹
Using

$$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$$
Where

$$\frac{c}{4000} = k$$
b) Note it is just rate OUT
of hole so

$$\frac{dh}{dt} = \frac{1600 - c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$$
b) Note it is just rate OUT
of hole so

$$\frac{dh}{dt} = \frac{1600 - c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$$

$$\frac{400}{4000} = k\sqrt{25} \qquad k = 0.02$$
c) Take h to LHS and t to
RHS
Multiply top and bottom of LHS
by 50
d) Using
H = (20 - x)^2
Differentiate h in terms of x

$$\frac{dh}{dt} = 1600 - c\sqrt{h}}{dh} = 50 \int_{0}^{100} \frac{1}{x} dh$$

Page **6** of **7** 2008-Jan-C4-Edexcel Copyright©2012 Prior Kain Ltd (1)

www.mathsgeeks.co.uk C4-Jan-Edexcel-2008

$50 \int_{20}^{10} \frac{2x - 40}{x} dx = 100 \int_{20}^{10} 1 - \frac{20}{x} dx$ $= 100 [x - 20 \ln x]_{20}^{10} = 100 ((10 - 20 \ln 10) - 100(20 - 20 \ln 20))$
$= 100 \left(-10 + 20 ln \frac{20}{10}\right) = 2000 ln 2 - 1000$ $= 2000 ln 2 - 1000 = 386.294 secs = 6 mins 26 secs$