1.

www.mathsgeeks.co.uk C3-Jan-Edexcel-2012

(4)

(5)

(a) $x^2 \ln(3)$ (b) $\frac{\sin 4x}{x^3}$	3 <i>x</i>)	
1.	a Use differentiation by parts $u\frac{dv}{dx} + v\frac{du}{dx}$	$x^{2}\ln(3x) = x^{2}3 \times \frac{1}{3x} + \ln(3x) \times 2x$
		= x + 2xln(3x)
2.	Use the quotient rule $\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$=\frac{x^{3}4\cos 4x - \sin 4x 3x^{2}}{\frac{x^{6}}{4x\cos 4x - 3\sin 4x}}$ $=\frac{x^{6}}{x^{4}}$

Differentiate with respect to x, giving your answer in its simplest form,

- 2. Graph question
- 3. The area, A mm², of a bacterial culture growing in milk, t hours after midday, is given by

$$A=20e^{1.5t}, \qquad t\geq 0$$

- a) Write down the area of the culture at midday.
- b) Find the time at which the area of the culture is twice its area at midday. Give your answer to the nearest minute.
 - $A = 20e^0 = 20$ a) At midday t=0 b) At twice the area A=40 $40 = 20e^{1.5t}$ $2 = e^{1.5t}$ ln 2 = 1.5tTaking natural logs $\frac{2}{3}\ln 2 = t$ t = 0.462 hrs = 27.73 mins = 28 mins
 - The point *P* is the point on the curve $x = 2 tan(y + \frac{\pi}{12})$ with *y*-coordinate $\frac{\pi}{4}$. 4.

Find an equation of the normal to the curve at P.

Page 1 of 6 2012-Jan-C3-Edexcel Copyright©2012 Prior Kain Ltd (1)

www.mathsgeeks.co.uk C3-Jan-Edexcel-2012

The gradient of the normal (m) is given by $\frac{dy}{dx} = -\frac{1}{m}$	$x = 2\tan(y + \frac{\pi}{12})$
Therefore $m = -\frac{dx}{dy}$	$\frac{dx}{dy} = 2 \sec^2(y + \frac{\pi}{12})$
When $y = \frac{\pi}{4}$	$\frac{dx}{dy} = 2 \sec^2(\frac{\pi}{4} + \frac{\pi}{12})$
	$\frac{dx}{dy} = 2 \sec^2\left(\frac{\pi}{3}\right) = \frac{2}{\cos^2\left(\frac{\pi}{3}\right)} = 8$
Therefore	y = -8x + c
When $y = \frac{\pi}{4}$ $x = 2 \tan \frac{\pi}{3} = 2\sqrt{3}$	$\frac{\pi}{4} = -8.2\sqrt{3} + c$
	$\frac{\pi}{4} + 16\sqrt{3} = c$
Therefore	$y = -8x + \frac{\pi}{4} + 16\sqrt{3}$

5. Solve, for $0 \le \theta \le 180^{\circ}$

$$2cot^2 3\theta = 7cosec 3\theta - 5$$

Give your answers in degrees to 1 decimal place.

Recognise that you need to turn cot into cosec using	$2cosec^2 3\theta - 2 = 7cosec 3\theta - 5$
$\cot^2\theta = \csc^2\theta - 1$	$2cosec^2 3\theta - 7cosec \ 3\theta + 3 = 0$
Let $u = cosec \ 3\theta$	$2u^2 - 7u + 3 = 0$
	(2u-1)(u-3) = 0
So u=3 or u=0.5	and $cosec \ 3\theta = 3$ or $cosec \ 3\theta = 0.5$
	So $\sin 3\theta = \frac{1}{3}$ or $\sin 3\theta = 2$
But $\sin 3\theta \neq 2$ Let $y = 3\theta$	Then range of y is $0 \le \theta \le 540^{\circ}$. $y_1 = sin^{-1}\left(\frac{1}{3}\right) = 19.5$ (1.d.p) $y_2 = 180 - 19.5 = 160.5$

Page **2** of **6** 2012-Jan-C3-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C3-Jan-Edexcel-2012

$$\theta_1 = \frac{19.5}{3} = 6.5^{\circ}$$

$$\theta_2 = \frac{160.5}{3} = 53.5^{\circ}$$

$$\theta_3 = \frac{379.5}{3} = 126.5^{\circ}$$

$$\theta_4 = \frac{520.5}{3} = 173.5^{\circ}$$

 $y_3 = 360 + 19.5 = 379.5$ $y_4 = 540 - 19.5 = 520.5$

Therefore

$$f(x) = x^2 - 3x + 2\cos\left(\frac{1}{2}x\right), \ 0 \le x \le \pi$$

a) Show that the equation f(x)=0 has a solution in the interval $0.8 \le x \le 0.9$ (2)

The curve with equation y=f(x) has a minimum point P

b) Show that the x-coordinate of P is the solution of the equation
$$x = \frac{3 + \sin(\frac{1}{2}x)}{2}$$
(4)

c) Using the iteration formula $x_{n+1} = \frac{3 + \sin{(\frac{1}{2}x_n)}}{2}$, $x_o = 2$

Find the values of x₁, x₂ and x₃, giving your answers to 3 decimal places. (3)
d) By choosing a suitable interval, show that the x-coordinate of P is 1.9078 correct to 4 decimal places.

a) Put in 0.8 and 0.9 and show that there is a change of sign.	$f(0.8) = (0.8)^2 - 3(0.8) + 2\cos(0.4) = 0.0821 > 0$
Put calculator into radians.	$f(0.9) = (0.9)^2 - 3(0.9) + 2\cos(0.45) = -0.0891 < 0$
b) $f(x)$ has a minimum at $\frac{dy}{dx} = 0.$ Using nx^{n-1}	$\frac{dy}{dx} = 2x - 3 - 2 \cdot \frac{1}{2}\sin\frac{1}{2}x = 0$
Using <i>h</i> x	$\frac{dy}{dx} = 2x - 3 - \sin\frac{1}{2}x = 0$
	So $2x = 3 + \sin\frac{1}{2}x$

Page **3** of **6** 2012-Jan-C3-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C3-Jan-Edexcel-2012

Therefore

$$x = \frac{1}{2}(3 + \sin \frac{1}{2}x)$$
c)

$$x_{n+1} = \frac{1}{2}(3 + \sin \frac{1}{2}x_n) \quad x_o = 2$$

$$x_1 = \frac{1}{2}(3 + \sin 1) = 1.9207 = 1.921 \quad (3.d.p)$$

$$x_2 = \frac{1}{2}(3 + \sin \frac{1.9207}{2}) = 1.9097 = 1.910 \quad (3.d.p)$$

$$x_3 = \frac{1}{2}(3 + \sin \frac{1.9097}{2}) = 1.908 \quad (3.d.p)$$
d) Choose an interval

$$1.90775 < x < 1.90785$$
and substitute back into

$$f'(x).$$

$$f'(1.90775) = -1.63 \times 10^{-4}$$

$$f'(1.90785) = 7.66 \times 10^{-6}$$
As there is a change of sign there is a root between these
two.

$$f: x \mapsto \frac{3(x+1)}{2x^2 + 7x - 4} - \frac{1}{x+4} \qquad x \in \mathbb{R}, x > \frac{1}{2}$$

a) Show that $f(x) = \frac{1}{2x-1}$ (4)

b) Find
$$f'(x)$$
 (3)
a. Find the domain of f^{-1}

(1)

$$g(x) = ln(x+1)$$

c) Find the solution of $fg(x) = \frac{1}{7}$, giving your answer in terms of e.

(4)

7.
a. Therefore
$$f(x) = \frac{3(x+1)}{(2x-1)(x+4)} - \frac{1}{x+4}$$
Find common denominator
$$f(x) = \frac{3(x+1) - (2x-1)}{(2x-1)(x+4)}$$

$$f(x) = \frac{x+4}{(2x-1)(x+4)}$$

$$f(x) = \frac{1}{(2x-1)}$$
b. Replace f(x) with x and x
with y and rearrange.
$$x = \frac{1}{(2y-1)}$$

Replace f(x) with x and x with y and rearrange.

Page 4 of 6 2012-Jan-C3-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C3-Jan-Edexcel-2012

	$2y - 1 = \frac{1}{x}$
Therefore	$y = \frac{1}{2}(\frac{1}{x} + 1)$
С.	x > 0
d.	$fg(x) = \frac{1}{2\ln(x+1) - 1} = \frac{1}{7}$
	$2\ln(x+1) - 1 = 7$
	$\ln(x+1) = 4$
	$x + 1 = e^4$
	$x = e^4 - 1$

8. a) Starting from the formulae for sin(A + B) and cos(A + B), prove that

$$tan(A+B) = \frac{tan A + tanB}{1 - tanAtanB}$$
(4)

b. Deduce that

$$\tan\left(\theta+\frac{\pi}{6}\right)=\frac{1+\sqrt{3}\tan\theta}{\sqrt{3-\tan\theta}}$$

(3)

c. Hence, or otherwise, solve for $0 \le \theta \le \pi$.

$$1 + \sqrt{3tan\theta} = (\sqrt{3} - tan\theta)tan(\pi - \theta)$$

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$
(6)

Therefore

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sinA\cos B + \cosA\sin B}{\cosA\cos B - \sinA\sin B}$$
Divide by cos A cos B
$$= \frac{\frac{\sin A}{\cos A} - \frac{\sin B}{\cos B}}{1 - \frac{\sin A}{\cos A} \frac{\sin B}{\cos B}} = \frac{\tan A - \tan B}{1 - \tan A \tan B}$$

Page **5** of **6** 2012-Jan-C3-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C3-Jan-Edexcel-2012

b) Fill in A+B formula	$=\frac{\tan\theta+\tan\frac{\pi}{6}}{1-\tan\theta\tan\frac{\pi}{6}}=\frac{\tan\theta+\frac{\sqrt{3}}{3}}{1-\tan\theta\frac{\sqrt{3}}{3}}$
x by $\sqrt{3}$	$=\frac{\sqrt{3}\tan\theta+1}{\sqrt{3}-\tan\theta}$
c) Rearrange	$\frac{\sqrt{3} - tan\theta}{\frac{\sqrt{3}tan\theta + 1}{\sqrt{3} - tan\theta}} = \tan(\pi - \theta)$
Therefore	$\sqrt{3} - tan\theta$ $tan\left(\theta + \frac{\pi}{6}\right) = tan(\pi - \theta)$
So	$\left(\theta + \frac{\pi}{6}\right) = (\pi - \theta)$ and $\theta = \frac{5\pi}{12}$
Or	$\left(\theta + \frac{\pi}{6}\right) = (2\pi - \theta)$ and $\theta = \frac{11\pi}{12}$