MathsGeeks

1. Differentiate with respect to x, giving your answer in its simplest form,
(a) $x^{2} \ln (3 x)$
(b) $\frac{\sin 4 x}{x^{3}}$
2. a Use differentiation by parts

$$
x^{2} \ln (3 x)=x^{2} 3 \times \frac{1}{3 x}+\ln (3 x) \times 2 x
$$

$u \frac{d v}{d x}+v \frac{d u}{d x}$

$$
=x+2 x \ln (3 x)
$$

2. Use the quotient rule

$$
\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

$$
\begin{aligned}
& =\frac{x^{3} 4 \cos 4 x-\sin 4 x 3 x^{2}}{x^{6}} \\
& =\frac{4 x \cos 4 x-3 \sin 4 x}{x^{4}}
\end{aligned}
$$

2. Graph question
3. The area, $\mathrm{A} \mathrm{mm}^{2}$, of a bacterial culture growing in milk, \boldsymbol{t} hours after midday, is given by

$$
A=20 e^{1.5 t}, \quad t \geq 0
$$

a) Write down the area of the culture at midday.
b) Find the time at which the area of the culture is twice its area at midday. Give your answer to the nearest minute.
a) At midday $t=0$

$$
\begin{aligned}
& A=20 e^{0}=20 \\
& 40=20 e^{1.5 t}
\end{aligned}
$$

b) At twice the area $\mathrm{A}=40$

$$
2=e^{1.5 t}
$$

Taking natural logs

$$
\begin{aligned}
& \ln 2=1.5 t \\
& \frac{2}{3} \ln 2=t \\
& t=0.462 \mathrm{hrs}=27.73 \mathrm{mins}=28 \mathrm{mins}
\end{aligned}
$$

4. The point P is the point on the curve $x=2 \tan \left(y+\frac{\pi}{12}\right)$ with y-coordinate $\frac{\pi}{4}$.

Find an equation of the normal to the curve at P.
Page 1 of 6

MathsGeeks

The gradient of the normal (m) is $\quad x=2 \tan \left(y+\frac{\pi}{12}\right)$
given by $\frac{d y}{d x}=-\frac{1}{m}$
Therefore $m=-\frac{d x}{d y} \quad \frac{d x}{d y}=2 \sec ^{2}\left(y+\frac{\pi}{12}\right)$
When $y=\frac{\pi}{4}$
$\frac{d x}{d y}=2 \sec ^{2}\left(\frac{\pi}{4}+\frac{\pi}{12}\right)$

$$
\frac{d x}{d y}=2 \sec ^{2}\left(\frac{\pi}{3}\right)=\frac{2}{\cos ^{2}\left(\frac{\pi}{3}\right)}=8
$$

Therefore

$$
y=-8 x+c
$$

When $y=\frac{\pi}{4} \quad x=2 \tan \frac{\pi}{3}=2 \sqrt{3} \quad \frac{\pi}{4}=-8.2 \sqrt{3}+c$

$$
\frac{\pi}{4}+16 \sqrt{3}=c
$$

Therefore

$$
y=-8 x+\frac{\pi}{4}+16 \sqrt{3}
$$

5. Solve, for $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{1 8 0}^{\circ}$

$$
2 \cot ^{2} 3 \theta=7 \operatorname{cosec} 3 \theta-5
$$

Give your answers in degrees to 1 decimal place.

Recognise that you need to turn cot into cosec using

$$
\cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1
$$

$$
2 \operatorname{cosec}^{2} 3 \theta-7 \operatorname{cosec} 3 \theta+3=0
$$

Let $u=\operatorname{cosec} 3 \theta$

$$
\begin{aligned}
& 2 u^{2}-7 u+3=0 \\
& (2 u-1)(u-3)=0
\end{aligned}
$$

So $u=3$ or $u=0.5$
and $\operatorname{cosec} 3 \theta=3$ or $\operatorname{cosec} 3 \theta=0.5$

$$
\text { So } \sin 3 \theta=\frac{1}{3} \text { or } \sin 3 \theta=2
$$

But $\sin 3 \theta \neq 2$
Then range of y is $0 \leq \theta \leq 540^{\circ}$.
Let $y=3 \theta$

$$
\begin{aligned}
& y_{1}=\sin ^{-1}\left(\frac{1}{3}\right)=19.5 \text { (1.d.p) } \\
& y_{2}=180-19.5=160.5
\end{aligned}
$$

MathsGeeks

$$
\begin{array}{ll}
& \left.\begin{array}{l}
y_{3}=360+19.5=379.5 \\
y_{4}
\end{array}\right) 540-19.5=520.5 \\
\text { Therefore } & \theta_{1}=\frac{19.5}{3}=6.5^{\circ} \\
\theta_{2}=\frac{160.5}{3}=53.5^{\circ} \\
& \theta_{3}=\frac{379.5}{3}=126.5^{\circ} \\
\theta_{4}=\frac{520.5}{3}=173.5^{\circ}
\end{array}
$$

6. For

$$
f(x)=x^{2}-3 x+2 \cos \left(\frac{1}{2} x\right), \quad 0 \leq x \leq \pi
$$

a) Show that the equation $f(x)=0$ has a solution in the interval $0.8 \leq x \leq 0.9$

The curve with equation $y=f(x)$ has a minimum point P
b) Show that the x-coordinate of P is the solution of the equation
$x=\frac{3+\sin \left(\frac{1}{2} x\right)}{2}$
(4)
c) Using the iteration formula $x_{n+1}=\frac{3+\sin \left(\frac{1}{2} x_{n}\right)}{2}, \quad x_{o}=2$

Find the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
(3)
d) By choosing a suitable interval, show that the x-coordinate of P is 1.9078 correct to 4 decimal places.
a) Put in 0.8 and 0.9 and show that there is a change of sign.
Put calculator into radians.

$$
f(0.9)=(0.9)^{2}-3(0.9)+2 \cos (0.45)=-0.0891<0
$$

b) $f(x)$ has a minimum at $\frac{d y}{d x}=0$.

$$
\frac{d y}{d x}=2 x-3-2 \cdot \frac{1}{2} \sin \frac{1}{2} x=0
$$

Using $n x^{n-1}$

$$
\begin{aligned}
& \frac{d y}{d x}=2 x-3-\sin \frac{1}{2} x=0 \\
& \text { So } 2 x=3+\sin \frac{1}{2} x
\end{aligned}
$$

MathsGeeks

Therefore
c)

$$
\begin{aligned}
& x=\frac{1}{2}\left(3+\sin \frac{1}{2} x\right) \\
& x_{n+1}=\frac{1}{2}\left(3+\sin \frac{1}{2} x_{n}\right) \quad x_{o}=2 \\
& x_{1}=\frac{1}{2}(3+\sin 1)=1.9207=1.921 \text { (3.d.p) } \\
& x_{2}=\frac{1}{2}\left(3+\sin \frac{1.9207}{2}\right)=1.9097=1.910 \text { (3.d.p) } \\
& x_{3}=\frac{1}{2}\left(3+\sin \frac{1.9097}{2}\right)=1.908(3 . d . p) \\
& f^{\prime}(x)=2 x-3-\sin \left(\frac{x}{2}\right) \\
& f^{\prime}(1.90775)=-1.63 \times 10^{-4} \\
& f^{\prime}(1.90785)=7.66 \times 10^{-6} \\
& \text { As there is a change of sign there is a root between these } \\
& \text { two. }
\end{aligned}
$$

d) Choose an interval $1.90775<x<1.90785$ and substitute back into $f^{\prime}(x)$.

7. The function f is defined by

$$
\begin{equation*}
f: x \mapsto \frac{3(x+1)}{2 x^{2}+7 x-4}-\frac{1}{x+4} \quad x \in \mathbb{R}, x>\frac{1}{2} \tag{4}
\end{equation*}
$$

a) Show that $f(x)=\frac{1}{2 x-1}$
b) Find $f^{\prime}(x)$
a. Find the domain of \boldsymbol{f}^{-1}

$$
g(x)=\ln (x+1)
$$

c) Find the solution of $\boldsymbol{f g}(\boldsymbol{x})=\frac{1}{7}$, giving your answer in terms of e.
7.
a. Therefore

$$
f(x)=\frac{3(x+1)}{(2 x-1)(x+4)}-\frac{1}{x+4}
$$

Find common denominator

$$
f(x)=\frac{3(x+1)-(2 x-1)}{(2 x-1)(x+4)}
$$

$$
f(x)=\frac{x+4}{(2 x-1)(x+4)}
$$

$$
f(x)=\frac{1}{(2 x-1)}
$$

b. Replace $f(x)$ with x and x with y and rearrange.

$$
x=\frac{1}{(2 y-1)}
$$

MathsGeeks

$$
\begin{array}{cl}
& 2 y-1=\frac{1}{x} \\
\text { Therefore } & y=\frac{1}{2}\left(\frac{1}{x}+1\right) \\
\text { c. } & x>0 \\
\text { d. } & f g(x)=\frac{1}{2 \ln (x+1)-1}=\frac{1}{7} \\
& 2 \ln (x+1)-1=7 \\
& \ln (x+1)=4 \\
& x+1=e^{4} \\
& x=e^{4}-1
\end{array}
$$

8. a) Starting from the formulae for $\sin (A+B)$ and $\cos (A+B)$, prove that

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan \tan B}
$$

b. Deduce that

$$
\tan \left(\theta+\frac{\pi}{6}\right)=\frac{1+\sqrt{3} \tan \theta}{\sqrt{3}-\tan \theta}
$$

c. Hence, or otherwise, solve for $\mathbf{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$.

$$
1+\sqrt{3 \tan \theta}=(\sqrt{3}-\tan \theta) \tan (\pi-\theta)
$$

a)

$$
\begin{align*}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \tag{6}\\
& \cos (A+B)=\cos A \cos B-\sin A \sin B
\end{align*}
$$

Therefore

Divide by $\cos \mathrm{A} \cos \mathrm{B}$

$$
\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B}
$$

$$
=\frac{\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}}{1-\frac{\sin A}{\cos A} \frac{\sin B}{\cos B}}=\frac{\tan A-\tan B}{1-\tan A \tan B}
$$

MathsGeeks

b) Fill in $\mathrm{A}+\mathrm{B}$ formula
x by $\sqrt{3}$
c) Rearrange
$=\frac{\tan \theta+\tan \frac{\pi}{6}}{1-\tan \theta \tan \frac{\pi}{6}}=\frac{\tan \theta+\frac{\sqrt{3}}{3}}{1-\tan \theta \frac{\sqrt{3}}{3}}$
$=\frac{\sqrt{3} \tan \theta+1}{\sqrt{3}-\tan \theta}$

Therefore

So
$\frac{\sqrt{3} \tan \theta+1}{\sqrt{3}-\tan \theta}=\tan (\pi-\theta)$
$\tan \left(\theta+\frac{\pi}{6}\right)=\tan (\pi-\theta)$
$\left(\theta+\frac{\pi}{6}\right)=(\pi-\theta)$ and $\theta=\frac{5 \pi}{12}$
Or
$\left(\theta+\frac{\pi}{6}\right)=(2 \pi-\theta)$ and $\theta=\frac{11 \pi}{12}$

