MathsGeeks

1. Given that

$$
\begin{equation*}
\frac{2 x^{4}-3 x^{2}+x+1}{\left(x^{2}-1\right)}=\left(a x^{2}+b x+c\right)+\frac{d x+e}{\left(x^{2}-1\right)} \tag{4}
\end{equation*}
$$

Find the values of a, b, c, d and e.

1
Work on RHS

$$
\begin{aligned}
& =\frac{\left(a x^{2}+b x+c\right)\left(x^{2}-1\right)+d x+e}{\left(x^{2}-1\right)} \\
& =\frac{a x^{4}+b x^{3}+c x^{2}-a x^{2}-b x-c+d x+e}{\left(x^{2}-1\right)}
\end{aligned}
$$

Compare terms on LHS and RHS

$$
\begin{array}{ll}
\left(x^{4}\right) & 2=a \\
\left(x^{3}\right) & 0=b \\
\left(x^{2}\right) & -3=c-a \text { therefore } c=-1
\end{array}
$$

(x) $1=-b+d$ therefore $d=1$
(Nos) $1=-c+e$ therefore $e=0$
2. A curve \mathbf{C} has equation

$$
y=e^{2 x} \tan x, \quad x \neq(2 n+1) \frac{\pi}{2}
$$

a) Show that the turning points on C occur when $\tan x=-1$
b) Find an equation for the tangent to C at the point where $x=0$.
2. a) Turning points occur when $\frac{d y}{d x}=0$. Differentiate by parts
$\frac{d y}{d x}=e^{2 x} \frac{d(\tan x)}{d x}+\tan x .2 e^{2 x}=0$ using

$$
u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$\frac{d y}{d x}=e^{2 x} \sec ^{2} x+\tan x .2 e^{2 x}=0$
Using $\sec ^{2} x=1+\tan ^{2} x$
$e^{2 x}\left(\tan ^{2} x+2 \tan x+1\right)=0$

But $e^{2 x} \neq 0$ so let $u=\tan x$
$u^{2}+2 u+1=0$
$(u+1)^{2}=0$ and $u=-1$ and $\tan x=-1$
b. At tangent $\frac{d y}{d x}=m$
$y=m x+c$

At $x=0$
$m=\frac{d y}{d x}=e^{0}(\tan 0+1)^{2}=1$

MathsGeeks

$$
y=x+c
$$

When $x=0, y=e^{0}(\tan 0)=0 \quad y=x$
so $c=0$. Therefore
3.

$$
\begin{equation*}
f(x)=\ln (x+2)-x+1, \quad x>-2, x \in \mathbb{R} \tag{2}
\end{equation*}
$$

a) Show that there is a root of $f(x)=0$ in the interval $2<x<3$.
b) Use the iterative formula

$$
\begin{equation*}
x_{n+1}=\ln \left(x_{n}+2\right)+1, \quad x_{0}=2.5 \tag{3}
\end{equation*}
$$

to calculate the values of x_{1}, x_{2} and x_{3} giving your answers to 5 decimal places.
c) Show that $\boldsymbol{x}=2.505$ is a root of $f(x)=0$ correct to 3 decimal places.
3. a For a root there will be a

$$
f(2)=\ln (4)-2+1=0.3863>0
$$ change of sign.

$$
f(3)=\ln (5)-3+1=-0.3906<0
$$

Therefore there is a root between 2 and 3 .
b. Put in the values for $x_{0}, x_{1}, x_{2} \quad x_{1}=\ln (2.5+2)+1=2.50408 \quad$ (5.d.p)

$$
\begin{aligned}
& x_{2}=\ln (2.50408+2)+1=2.50498 \\
& x_{3}=\ln (2.50498+2)+1=2.50518
\end{aligned}
$$

c. Select reasonable values either side to show

$$
f(2.5045)=\ln (4.5045)-2.5045+1=5.7 \times 10^{-4}
$$ change of sign.

$$
\begin{aligned}
& f(2.5055)=\ln (4.5055)-2.5055+1=-2.01 \times 10^{-4} \\
& <0 \\
& \text { Therefore there is a root of } 2.505 \text { to } 3 \text { decimal places. }
\end{aligned}
$$

4. Graph question

5. The radioactive decay of a substance is given by

$$
R=1000 e^{-c t}
$$

Where R is the number of atoms at time t and c is a positive constant.
a) Find the number of atoms when the substance started to decay.

Page $\mathbf{2}$ of $\mathbf{6}$

MathsGeeks

It takes $\mathbf{5 7 3 0}$ years for half of the substance to decay.
b) Find the value of \mathbf{c} to $\mathbf{3}$ significant figures.
c) Calculate the number of atoms that will be left when $\boldsymbol{t}=\mathbf{2 2 9 2 0}$.
d) In the spaces provided sketch the graph of \mathbf{R} against \mathbf{t}.
a) At the start $\mathrm{t}=0$, therefore $R=1000 e^{0}=1000$
b) Half the substance is $\quad 500=1000 e^{-5730 c}$ when $\mathrm{R}=500$
Therefore

$$
\frac{1}{2}=e^{-5730 c}
$$

Taking natural logs

$$
\begin{aligned}
& \ln \left(\frac{1}{2}\right)=-5730 c \\
& c=-\frac{1}{5730} \ln \left(\frac{1}{2}\right)=1.21 \times 10^{-4}(3 . s . f)
\end{aligned}
$$

c) Put in values for c and $R=1000 e^{-1.21 \times 10^{-4} .22920}=62.5$ atoms $t=22920$ and work out R
d) Graph
6. a) Use the double angle formula and the identity

$$
\begin{equation*}
\cos (A+B) \equiv \cos A \cos B-\sin A \sin B \tag{4}
\end{equation*}
$$

To obtain an expression for $\cos 3 x$ in terms of powers of $\cos x$ only.
b) i) Prove that

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x} \equiv 2 \sec x, \quad x \neq(2 n+1) \frac{\pi}{2} \tag{4}
\end{equation*}
$$

ii) Hence find, for $0<x<2 \pi$, all solutions of

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}=4 \tag{3}
\end{equation*}
$$

formula
Using $\cos 2 x=2 \cos ^{2} x-1$ and $\sin 2 x=2 \sin x \cos x$

$$
=2 \cos ^{3} x-\cos x-2 \sin ^{2} x \cos x
$$

Using

$$
=2 \cos ^{3} x-\cos x-2\left(1-\cos ^{2} x\right) \cos x
$$

$$
\cos ^{2} x+\sin ^{2} x=1
$$

$$
=4 \cos ^{3} x-3 \cos x
$$

MathsGeeks

b) (i) Find a common denominator

$$
\begin{aligned}
& \frac{\cos ^{2} x+(1+\sin x)^{2}}{(1+\sin x) \cos x}=\frac{\cos ^{2} x+1+2 \sin x+\sin ^{2} x}{(1+\sin x) \cos x} \\
& =\frac{2+2 \sin x}{(1+\sin x) \cos x}=\frac{2(1+\sin x)}{(1+\sin x) \cos x}=\frac{2}{\cos x}=2 \sec x
\end{aligned}
$$

But

$$
\cos ^{2} x+\sin ^{2} x=1
$$

(ii) Using part i) then

$$
2 \sec x=4
$$

$$
\cos x=\frac{2}{4}=\frac{1}{2}
$$

Looking at graph there are two values of $\cos x$ in this interval.

$$
x_{1}=\cos ^{-1}(0.5)=\frac{\pi}{3}
$$

$$
x_{2}=2 \pi-x_{1}=\frac{5 \pi}{3}
$$

7. A Curve C has equation

$$
y=3 \sin 2 x+4 \cos 2 x, \quad-\pi<x<\pi .
$$

The point $A(0,4)$ lies on C.
a) Find an equation of the normal to the curve C at A.
b) Express y in the form $\mathrm{R} \sin (2 x+\alpha)$, where $\mathrm{R}>0$ and $0<\alpha<\frac{\pi}{2}$

Give the value of α to 3 significant figures.
c) Find the coordinates of the point of intersection of the curve C with the x-axis. Give your answer to $\mathbf{2}$ decimal places.

7a. For a normal $\frac{d y}{d x}=-\frac{1}{m} \quad$ When $y=m x+c$

$$
\begin{aligned}
& \frac{d y}{d x}=6 \cos 2 x-8 \sin 2 x \\
& \text { When } \mathrm{x}=0, \frac{d y}{d x}=6=-\frac{1}{m} \quad y=-\frac{1}{6} x+c \\
& \text { Sub in } A(0,4) \\
& \text { b. If } R \sin (2 x+\alpha) \\
& \tan \alpha=\frac{4}{3} \\
& \text { c. At } x \text {-axis } y=0 \\
& \text { Et } y=2 x \\
& 4=-\frac{1}{6}(0)+c \\
& c=4 \text { and therefore } \\
& y=-\frac{1}{6} x+4 \\
& \left.R=\sqrt{\left(3^{2}\right.}+4^{2}\right)=5 \\
& \alpha \approx 0.927 \\
& 3 \sin 2 x+4 \cos 2 x=0 \\
& 5 \sin (2 x+0.927)=0 \\
& \sin (2 x+0.927)=0 \\
& \sin (y+0.927)=0, \quad-2 \pi<y<2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& y+0.927=-2 \pi,-\pi, 0, \pi, 2 \pi \\
& y=-4.069,-0.927,2.215,5.356 \\
& x=-2.03,-0.46,1.11,2.68 \quad \text { 2.d.p }
\end{aligned}
$$

8. The functions f and g are defined as

$$
\begin{gathered}
f: x \mapsto 1-2 x^{3}, \quad x \in \mathbb{R} \\
g: x \mapsto \frac{3}{x}-4, x>0, x \in \mathbb{R}
\end{gathered}
$$

a) Find the inverse function f^{-1}
b) Show that the composite function $g f$ is

$$
g f: x \mapsto \frac{8 x^{3}-1}{1-2 x^{3}}
$$

c) Solve $g f(x)=0$
d) Use calculus to find the coordinates of the stationary point on the graph of $y=\boldsymbol{g} f(x)$.
a) Reverse y and x
b) Sub f into g

$$
g f: x \mapsto \frac{3}{\left(1-2 x^{3}\right)}-4
$$

Therefore

$$
g f: x \mapsto \frac{3-4\left(1-2 x^{3}\right)}{\left(1-2 x^{3}\right)}=\frac{8 x^{3}-1}{1-2 x^{3}}
$$

c)

$$
\begin{aligned}
& y=1-2 x^{3} \\
& x=1-2 y^{3} \\
& x=1-2 y^{3} \\
& \frac{1}{2}(1-x)=y^{3} \\
& \sqrt[3]{\frac{1}{2}(1-x)}=y
\end{aligned}
$$

$8 x^{3}-1=0$
$8 x^{3}=1$
$x^{3}=\frac{1}{8}$ and $x=\frac{1}{2}$
d) Stationary at $\frac{d y}{d x}=0$.

Differentiate using quotient rule

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Therefore
Therefore

$$
u=8 x^{3}-1
$$

$$
\frac{d u}{d x}=24 x^{2}
$$

$$
v=1-2 x^{3}
$$

$$
\frac{d v}{d x}=-6 x^{2}
$$

$\frac{d y}{d x}=\frac{\left(1-2 x^{3}\right) \cdot 24 x^{2}-\left(8 x^{3}-1\right) \cdot-6 x^{2}}{\left(1-2 x^{3}\right)^{2}}=0$
$24 x^{2}-48 x^{5}+48 x^{5}-6 x^{2}=0$
$18 x^{2}=0 \quad$ and $x=0$.

$$
\begin{array}{ll}
& \text { At } x=0, y=\frac{0-1}{1-0}=-1 \\
\text { Therefore } & \text { Stationary point }(0,-1)
\end{array}
$$

