MathsGeeks

1. (a) By writing $\sin 3 \theta=\sin (2 \theta+\theta)$, show that

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \tag{5}
\end{equation*}
$$

(b) Given that $\sin \theta=\frac{\sqrt{3}}{4}$, find the exact value of $\sin 3 \theta$.

1a) Using $\sin (2 \theta+\theta)=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta$

$$
\begin{align*}
\sin (A+B)= & \sin A \cos B \tag{2}\\
& +\cos A \sin B
\end{align*}
$$

Using
$\sin (2 \theta+\theta)=2 \sin \theta \cos ^{2} \theta+\cos 2 \theta \sin \theta$
$\sin 2 x=2 \sin x \cos x$
Using
$\cos 2 x=1-2 \sin ^{2} x$
And

$$
\cos ^{2} x=1-\sin ^{2} x
$$

$$
\sin (2 \theta+\theta)=2 \sin \theta \cos ^{2} \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta
$$

$$
\sin (2 \theta+\theta)=2 \sin \theta\left(1-\sin ^{2} \theta\right)+\left(1-2 \sin ^{2} \theta\right) \sin \theta
$$

$$
\sin (2 \theta+\theta)=3 \sin \theta-4 \sin ^{3} \theta
$$

b) $\sin \theta=\frac{\sqrt{3}}{4}$

$$
\begin{gathered}
\sin (3 \theta)=3 \frac{\sqrt{ } 3}{4}-4 \frac{(3)^{\frac{3}{2}}}{4^{3}}=\frac{(3)^{\frac{3}{2}}}{4}-\frac{(3)^{\frac{3}{2}}}{16}=\frac{3(3)^{\frac{3}{2}}}{16}=\frac{(3)^{\frac{5}{2}}}{16} \\
=\frac{9 \sqrt{3}}{16}
\end{gathered}
$$

2

$$
f(x)=1-\frac{3}{x+2}+\frac{3}{(x+2)^{2}}, \quad x \neq-2
$$

(a) Show that

$$
\begin{equation*}
f(x)=\frac{x^{2}+x+1}{(x+2)^{2}}, \quad x \neq-2 \tag{4}
\end{equation*}
$$

(b) Show that $x^{2}+x+1>0$ for all values of x.
(c) Show that $f(x)>0$ for all values of $x, x \neq 2$.

2a) Find a common denominator

$$
\begin{aligned}
& f(x)=\frac{1(x+2)^{2}-3(x+2)+3}{(x+2)^{2}} \\
& f(x)=\frac{x^{2}+4 x+4-3 x-6+3}{(x+2)^{2}} \\
& f(x)=\frac{x^{2}+x+1}{(x+2)^{2}}
\end{aligned}
$$

MathsGeeks

b) Complete the square

Therefore as
c) As

Therefore
$x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
$\left(x+\frac{1}{2}\right)^{2}>0$ and $\frac{3}{4}>0$ then $x^{2}+x+1>0$
$(x+2)^{2}$ is always >0

$$
\frac{x^{2}+x+1}{(x+2)^{2}}>0
$$

3. The curve C has equation

$$
x=2 \sin y
$$

(a) Show that the point $P\left(\sqrt{ } 2, \frac{\pi}{4}\right)$ lies on C.
(b) Show that $\frac{d y}{d x}=\frac{1}{\sqrt{2}}$ at P.
(c) Find an equation of the normal to C at P. Give your answer in the form $y=$ $m x+c$, where m and c are exact constants.

3a) Put the values into RHS

$$
\begin{equation*}
x=2 \sin y=2 \sin \frac{\pi}{4}=\frac{2 \sqrt{2}}{2}=\sqrt{2}=x Q E D \tag{4}
\end{equation*}
$$

b) Find $\frac{d x}{d y}$

$$
\frac{d x}{d y}=2 \cos y
$$

Therefore
c) Using gradient of normal is

$$
\frac{d y}{d x}=\frac{1}{2 \cos y}=\frac{1}{2} \sec y=\frac{1}{2} \times \frac{2}{\sqrt{2}}=\frac{1}{\sqrt{2}}
$$

$$
\frac{d y}{d x}=-\frac{1}{m}
$$

Put P into curve $P\left(\sqrt{2}, \frac{\pi}{4}\right)$
Therefore

$$
\begin{aligned}
& \frac{\pi}{4}=-\sqrt{2} \times \sqrt{2}+c \quad c=\frac{\pi}{4}+2 \\
& y=-\sqrt{2 x}+\frac{\pi}{4}+2
\end{aligned}
$$

4. (i) The curve C has equation

$$
y=\frac{x}{9+x^{2}}
$$

Use calculus to find the coordinates of the turning points of C.
(ii) Given that

$$
\begin{equation*}
y=\left(1+e^{2 x}\right)^{\frac{3}{2}} \tag{6}
\end{equation*}
$$

find the value of $\frac{d y}{d x}$ at $x=\frac{1}{2} \ln 3$.

MathsGeeks

4(i) At turning point $\frac{d y}{d x}=0$

$$
y=\frac{x}{9+x^{2}}=x\left(9+x^{2}\right)^{-1}
$$

Use differentiation by parts

$$
u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$$
u=x \frac{d u}{d x}=1 \quad v=\left(9+x^{2}\right)^{-1} \frac{d v}{d x}
$$

$$
=-2 x\left(9+x^{2}\right)^{-2}
$$

$$
\frac{d y}{d x}=x .-2 x\left(9+x^{2}\right)^{-2}+\left(9+x^{2}\right)^{-1}
$$

$$
\frac{d y}{d x}=\frac{-2 x^{2}+9+x^{2}}{\left(9+x^{2}\right)^{2}}=0 \quad-x^{2}+9=0
$$

$$
x^{2}=9 \quad x \pm 3
$$

When $\mathrm{x}=3$

When $x=-3$

$$
y=\frac{x}{9+x^{2}}=\frac{3}{9+9}=\frac{3}{18}=\frac{1}{6}
$$

$$
y=\frac{x}{9+x^{2}}=\frac{-3}{9+9}=-\frac{3}{18}=-\frac{1}{6}
$$

b) Find the value of $\frac{d y}{d x}$. $\quad y=\left(1+e^{2 x}\right)^{\frac{3}{2}}$

Differentiate the whole and then in the brackets.
$\frac{d y}{d x}=\frac{3}{2}\left(1+e^{2 x}\right)^{\frac{1}{2}} \cdot 2 e^{2 x}$
At $x=\frac{1}{2} \ln 3$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3}{2}\left(1+e^{2 \frac{1}{2} \ln 3}\right)^{\frac{1}{2}} \cdot 2 e^{2 \frac{1}{2} \ln 3} \\
& \frac{d y}{d x}=3(1+3)^{\frac{1}{2}} \cdot 3=9 \sqrt{4}=18
\end{aligned}
$$

5. Figure 1 shows an oscilloscope screen.

The curve shown on the screen satisfies the equation

$$
y=\sqrt{3} \cos x+\sin x
$$

(a) Express the equation of the curve in the form $y=R \sin (x+\alpha)$, where R and α are constants, $R>0$, and $0<\alpha<\frac{\pi}{2}$.
(b) Find the values of $x, 0 \leq x \leq 2 \pi$, for which $y=1$.

5a) Compare with

$$
\begin{aligned}
\sin (x+\alpha)= & \sin x \cos \alpha \\
& +\cos x \sin \alpha
\end{aligned}
$$

$$
\begin{align*}
& \sin \alpha=\sqrt{3} \tag{4}\\
& \cos \alpha=1 \\
& R^{2}=3+1 \quad R=2 \\
& \tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\sqrt{3} \quad \alpha=\frac{\pi}{3} \\
& y=\sqrt{3} \cos x+\sin x=2 \sin \left(x+\frac{\pi}{3}\right)
\end{align*}
$$

MathsGeeks

b) When $y=1$

$$
\text { is } \frac{\pi}{3} \leq p \leq 2 \pi+\frac{\pi}{3}
$$

$$
\begin{aligned}
& 2 \sin \left(x+\frac{\pi}{3}\right)=1 \\
& \sin p=\frac{1}{2} \quad p=\sin ^{-1} \frac{1}{2}=\frac{\pi}{6} \text { (not in range) } \\
& p_{1}=\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \quad \text { and } p_{2}=2 \pi+\frac{\pi}{6}=\frac{13 \pi}{6} \\
& x_{1}=\frac{5 \pi}{6}-\frac{\pi}{3}=\frac{3 \pi}{6}=\frac{\pi}{2} \\
& x_{2}=\frac{13 \pi}{6}-\frac{\pi}{3}=\frac{11 \pi}{6}
\end{aligned}
$$

$$
\text { Let } p=x+\frac{\pi}{3} \text { the domain of } p \quad \sin p=\frac{1}{2} \quad p=\sin ^{-1} \frac{1}{2}=\frac{\pi}{6} \text { (not in range) }
$$

Therefore
6. The function f is defined by

$$
f: x \rightarrow \ln (4-2 x), x<2 \text { and } x \in \mathbb{R}
$$

(a) Show that the inverse function of f is defined by

$$
f^{-1}: x \rightarrow 2-\frac{1}{2} e^{x}
$$

and write down the domain of $\boldsymbol{f}^{-1}: \boldsymbol{x}$.
(b) Write down the range of $f^{-1}: x$.
(c) In the space provided on page 16, sketch the graph of $y=f^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes.

The graph of $y=x+2$ crosses the graph of $y=f^{-1}(x)$ at $x=k$.
The iterative formula

$$
x_{n+1}=-\frac{1}{2} e^{x_{n}}, \quad x_{0}=-0.3
$$

is used to find an approximate value for \boldsymbol{k}.
(d) Calculate the values of x_{1} and x_{2}, giving your answers to 4 decimal places.
(e) Find the value of \boldsymbol{k} to $\mathbf{3}$ decimal places.

6a) exchange y and x and then

$$
y=\ln (4-2 x)
$$

$$
x=\ln (4-2 y)
$$

make y the subject.

MathsGeeks

$$
e^{x}=4-2 y
$$

$$
2 y=4-e^{x} \quad y=2-\frac{1}{2} e^{x}
$$

Domain is unrestricted so
Domain $f^{-1}(x) x \in \mathbb{R}$
b) Maximum value of $-\frac{1}{2} e^{x}$

Range $f^{-1}(x)<2$
0 therefore
c) Recognise asymtote at $\mathrm{y}=2$ and plot. When $f^{-1}(x)=0$ then When $\mathrm{x}=0$
$2-\frac{1}{2} e^{x}=0 \quad 2=\frac{1}{2} e^{x} \quad e^{x}=4 \quad x=\ln 4$
$f^{-2}(x)=2-\frac{1}{2} e^{0}=\frac{3}{2}$
d) Simply put the values into the equation

$$
x_{1}=-\frac{1}{2} e^{-0.3}=-0.3704 \text { (4.d.p) }
$$

$$
x_{2}=-\frac{1}{2} e^{-0.3704}=-0.3452(4 . \mathrm{d} . \mathrm{p})
$$

e) Keep going until it is stable to 3.d.p
$x_{3}=-\frac{1}{2} e^{-0.3453}=-0.35403019$
$x_{4}=-0.35092688 \ldots$
$x_{5}=-0.35201761 \ldots$
$x_{6}=-0.35163386 \ldots$
$k \approx-0.352$ (3.d.p)
7.

$$
f(x)=x^{4}-4 x-8
$$

(a) Show that there is a root of $\mathrm{f}(\mathrm{x})=0$ in the interval $[-2,-1]$.
(b) Find the coordinates of the turning point on the graph of $y=f(x)$.
(c) Given that $f(x)=(x-2)\left(x^{3}+a x^{2}+b x+c\right)$, find the values of the constants, a, b and c.
(d) In the space provided on page 21, sketch the graph of $y=f(x)$.
(e) Hence sketch the graph of $\boldsymbol{y}=|\mathrm{f}(x)|$.

$$
\begin{array}{ll}
\text { 7a) Put in }-2 \text { and then }-1 \text { and } \\
\text { show there is a change of sign }
\end{array} \quad f(-2)=-2^{4}-4(-2)-8=16>0, ~(-1)=-1^{4}-4(-1)-8=-3<0
$$

MathsGeeks

Therefore there is a change of sign and a root between the two.
b) At turning point $\frac{d y}{d x}=0$. Using $\frac{d y}{d x}=4 x^{3}-4=0$

$$
4 x^{3}=4 \quad x^{3}=1 \quad x=1
$$

When $\mathrm{x}=1$ find y

$$
y=1^{4}-4(1)-8=-11
$$

c) Find ($x-2$) as a factor

Subtract each line

$$
\begin{array}{r}
\frac{x^{3}+2 x^{2}+4 x+4}{(x-2) \sqrt{\left(x^{4}+0 x^{3}+0 x^{2}-4 x-8\right)}} \begin{array}{r}
\frac{x^{4}-2 x^{3}}{2 x^{3}}+0 x^{2}-4 x-8 \\
\frac{2 x^{3}-4 x^{2}}{4 x^{2}}-4 x-8 \\
\frac{4 x^{2}-8 x}{4 x}-8 \\
\frac{4 x-8}{0}
\end{array}
\end{array}
$$

Therefore
$a=2, b=4, c=4$
d) Graph question.
8. (i) Prove that

$$
\begin{equation*}
\sec ^{2} x-\operatorname{cosec}^{2} x \equiv \tan ^{2} x-\cot ^{2} x \tag{3}
\end{equation*}
$$

(ii) Given that

$$
y=\arccos x,-1 \leq x \leq 1 \text { and } 0 \leq y \leq \pi
$$

(a) express $\arcsin x$ in terms of y.
(b) Hence evaluate $\arccos x+\arcsin x$. Give your answer in terms of π.

8a) Work on RHS

$$
\sec ^{2} x-\operatorname{cosec}^{2} x \equiv \tan ^{2} x-\cot ^{2} x
$$

Using

$$
\sec ^{2} x=1+\tan ^{2} x
$$

Using
$\operatorname{cosec}^{2} x=1+\cot ^{2} x$
b)

Find $m=\arcsin x$

$$
y=\arccos x
$$

$$
x=\cos y=\sin \left(\frac{\pi}{2}-y\right)
$$

$$
m=\frac{\pi}{2}-y
$$

MathsGeeks

www.mathsgeeks.co.uk

C3-Jan-Edexcel-2007
c)
$\arccos x+\arcsin x=y+\frac{\pi}{2}-y=\frac{\pi}{2}$

