www.mathsgeeks.co.uk C2-June-Edexcel-2009

1. Use calculus to find the value of

 $\int_1^4 (2x+3\sqrt{x})dx$

1.

 $=\int_{1}^{4} \left(2x + 3x^{\frac{1}{2}}\right) dx$

Using

$$\frac{1}{n+1}x^{n+1} = \left[2\frac{1}{2}x^2 + \frac{3}{3/2}x^{\frac{3}{2}}\right] = \left[x^2 + 2x^{\frac{3}{2}}\right] = (4^2 + 2(2)^3) - (1+2)$$

clude a C if you have

(don't include a C if you have limits as they would cancel) = 32 - 3 = 29

a) Bring 2 out to make the

2. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$(2 + kx)^7$$

 $-27(1+kx)^{7}$

where k is a constant. Give each term in its simplest form. (4)

Given that the coefficient of x^2 is 6 times the coefficient of x, (b) find the value of k. (2)

expansion begin with a 1.
$$= 2 \left(1 + \frac{1}{2}\right)^{n}$$
Using

$$(1+x)^{n} = 1 + \frac{nx}{1!} = 2^{7} (1 + 7\left(\frac{kx}{2}\right) + \frac{7 \times 6}{2}\left(\frac{kx}{2}\right)^{2}\right) \dots \dots + \frac{n(n-1)x^{2}}{2!} = 128 + 448kx + 672k^{2}x^{2} \dots + \frac{128}{2!}$$
b) Therefore

$$448 \times 6k = 672k^{2}$$

$$\frac{2688}{672} = k \qquad k = 4$$

3.

f(x) = (3x - 2)(x - k) - 8

where *k* is a constant. (a) Write down the value of f (*k*).

(1)

When f (x) is divided by (x - 2) the remainder is 4

Page **1** of **6** 2009-June-C2-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C2-June-Edexcel-2009

(b) Find the value of k.

(c) Factorise f (x) completely.

a) Put k in for x	f(k) = (3k - 2)(k - k) - 8 = -8
b) Therefore $f(2) = 4$	f(2) = 4(2-k) - 8 = -4k = 4 $k = -1$
c)	f(x) = (3x - 2)(x + 1) - 8
	$f(x) = 3x^2 - 2x + 3x - 2 - 8$
	$f(x) = 3x^2 + x - 10$
	f(x) = (3x - 5)(x + 2)

4 (a) Complete the table below, giving values of $\sqrt{(2^X + 1)}$ to 3 decimal places.

x	0	0.5	1	1.5	2	2.5	3
$\sqrt{(2^X+1)}$	1.414	1.554	1.732	1.957	2.236	2.580	3

(2)

Figure 1 shows the region *R* which is bounded by the curve with equation $y = \sqrt{2x + 12}$, the *x*-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values from your table, to find an approximation for the area of *R*. (4)

(c) By reference to the curve in Figure 1 state, giving a reason, whether your approximation in part (b) is an overestimate or an underestimate for the area of *R*. (2)

a) Filled in table

Where h is 0.5-0=0.5

$$y \approx \frac{h}{2} \{ y_0 + y_n + 2(y_1 + y_2 \dots y_{n-1}) \}$$
$$y \approx \frac{0.5}{2} \{ 1.414 + 3 + 2(1.554 + 1.732 + 1.957 + 2.236 + 2.580) \} = 6.133$$

c) Overestimate as the trapezium strips are all above the curve and so it will be larger than the actual value.

Page **2** of **6** 2009-June-C2-Edexcel Copyright©2012 Prior Kain Ltd

(3)

www.mathsgeeks.co.uk C2-June-Edexcel-2009

5. The third term of a geometric sequence is 324 and the sixth term is 96	
(a) Show that the common ratio of the sequence is $\frac{2}{3}$	(2)
(b) Find the first term of the sequence.	(2)
(c) Find the sum of the first 15 terms of the sequence.	(3)
(d) Find the sum to infinity of the sequence.	(2)

a) Using

$$u_n = ar^{n-1}$$

Do (2)÷(1)
b) Fill r back into (1)
Set up two equations
 $324 = ar^2$ (1)
 $96 = ar^5$ (2)
 $96 = ar^3$
 $r^3 = \frac{8}{27}$
 $r = \frac{2}{3}$
 $324 = a\left(\frac{2}{3}\right)^2$
 $324 = a\left(\frac{2}{3}\right)^2$
 $324 = \frac{4a}{9}$
 $a = 729$

c) Using

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{15} = \frac{729\left(1-\frac{2^{15}}{3}\right)}{1-\frac{2}{3}} = 2182.0 \ (1. \, d. \, p)$$

d) Using
$$S_{\infty} = \frac{a}{1-r}$$
 $S_{\infty} = \frac{729}{1-\frac{2}{3}} = 2187$

6. The circle C has equation

$$x^2 + y^2 - 6x + 4y = 12$$

The point P(-1, 1) and the point Q(7, -5) both lie on C.

(b) Show that PQ is a diameter of C.

The point *R* lies on the positive *y*-axis and the angle $PRQ = 90^{\circ}$.

a) Complete the square for x and y	$x^{2} + y^{2} - 6x + 4y - 12 = (x - 3)^{2} + (y + 2)^{2} + k = 0$
	$x^{2} + y^{2} - 6x + 4y - 12 = x^{2} - 6x + 9 + y^{2} + 4y + 4 + k$
	= 0
Cancel terms	-12 = 9 + 4 + k $k = -25$
Therefore	$(x-3)^2 + (y+2)^2 - 25 = 0$

Page **3** of **6** 2009-June-C2-Edexcel Copyright©2012 Prior Kain Ltd (5)

(2)

(4)

of a circle Therefore

www.mathsgeeks.co.uk C2-June-Edexcel-2009

 $(x-3)^2 + (y+2)^2 = 5^2$ Compare with equation $(x-a)^{2} + (y-b)^{2} = r^{2}$ With centre(a, b) radius r Centre (3,-2) and radius 5. b) PQ is a diameter $= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ if it has length 10 and P and Q lie $=\sqrt{(-5-1)^2+(7--1)^2}$ on C $=\sqrt{100} = 10$

Put Q into C

 $(7-3)^2 + (-5+2)^2 = 16 + 9 = 5^2$ Put P into C $(-1-3)^2 + (1+2)^2 = 16 + 9 = 5^2$

c) As PRQ is 90 and PQ is a diameter R has to lie on C and x=0. Therefore

$$(x-3)^{2} + (y+2)^{2} = 5^{2}$$

$$9 + (y+2)^{2} = 5^{2}$$

$$(y+2)^{2} = 16$$

$$y+2 = \pm 4 \qquad y = 2, -6 \quad y > 0 \quad y = 2$$

7. (i) Solve, for $-180^{\circ} \le \theta < 180^{\circ}$,

$$(1 + tan\theta)(5sin\theta - 2) = 0$$
(4)

(ii) Solve, for $0 \le x < 360^\circ$

$$4sinx = 3tanx$$

(I)Take each bit in turn $(1 + tan\theta) = 0$ $tan\theta = -1$ $\theta = -45^{\circ}, 135^{\circ}$ For tan you can add 180 degress or subtract 180 degrees indefinitely. $(5sin\theta - 2) = 0$ $sin\theta = \frac{2}{5}$ $\theta = 23.58^\circ$, For sin in this region there is another result at 180 minus 156.42 original value. Therefore $\theta = -45^{\circ}, 135^{\circ}, 23.58^{\circ}, 156.42^{\circ}$

Page 4 of 6 2009-June-C2-Edexcel Copyright©2012 Prior Kain Ltd

(6)

www.mathsgeeks.co.uk

C2-June-Edexcel-2009

(2)

(5)

(ii) Re-arrange and using

$$tanx = \frac{sinx}{cosx}$$
 $4sinx - 3\frac{sinx}{cosx} = 0$
 $sinx\left(4 - \frac{3}{cosx}\right) = 0$
Take each bit in turn
 $sinx = 0$
 $x = 0, 180^{\circ}$
For cos the next value is 360
minus the first value.
Therefore
 $3 = 4cosx$
 $x = cos^{-1}\frac{3}{4}$
 $x = 41.4^{\circ}, 318.6^{\circ}$

8. (a) Find the value of y such that

$$log_2 y = -3$$

(b) Find the values of x such that

$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x \tag{5}$$

a) Anti-logging
b) Multiply up.

$$y = 2^{-3} = \frac{1}{8}$$

$$log_2 32 + log_2 16 = (log_2 x)^2$$

$$log_2 32 + log_2 16 = (log_2 x)^2$$

$$5 + 4 = (log_2 x)^2$$

$$9 = (log_2 x)^2$$

$$\pm 3 = log_2 x$$
Anti-logging

$$x = 2^3, 2^{-3} = 8, \frac{1}{8}$$

9. Figure 2 shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height h cm. The cross section is a sector of a circle. The sector has radius r cm and angle 1 radian.

The volume of the box is 300 cm³.

(a) Show that the surface area of the box, S cm², is given by

$$S=r^2+\frac{1800}{r}$$

- (b) Use calculus to find the value of *r* for which *S* is stationary. (4)
- (c) Prove that this value of *r* gives a minimum value of *S*. (2) (d) Find, to the nearest cm^2 , this minimum value of S.
- (2)

Page 5 of 6 2009-June-C2-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C2-June-Edexcel-2009

a) Use the Volume to get rid $Vol = Area \ of \ base \ \times \ height$ of h Area of sector $300 = \frac{1}{2}r^2 \times 1 \times h$ $h = \frac{600}{r^2}$ $Area = \frac{1}{2}r^2\theta$ $S = 2 \times \frac{1}{2}r^{2} \times 1 + 2rh + r\vartheta h$ $S = r^{2} + 2rh + rh$ The surface area $S = r^2 + \frac{1800}{r} = r^2 + 1800r^{-1}$ Fill in h $\frac{dS}{dr} = 2r - 1800r^{-2} = 0 \qquad 2r = \frac{1800}{r^2}$ b) Stationary value at $\frac{dS}{dr} = 0$ $r^3 = 900$ $r = \sqrt[3]{900}$ $\frac{d^2S}{dr^2} = 2 + 3600r^3 > 0$ so is a minimum c) If this is a minimum then $\frac{d^2S}{dr^2} > 0$ $S = 900^{\frac{2}{3}} + \frac{1800}{900^{\frac{1}{3}}} = 279.65cm^2$ d) Fill value of r into S