MathsGeeks

1. Use calculus to find the value of

$$
\int_{1}^{4}(2 x+3 \sqrt{x}) d x
$$

1.

$$
=\int_{1}^{4}\left(2 x+3 x^{\frac{1}{2}}\right) d x
$$

Using

$$
=\left[2 \frac{1}{2} x^{2}+\frac{3}{3 / 2} x^{\frac{3}{2}}\right]=\left[x^{2}+2 x^{\frac{3}{2}}\right]=\left(4^{2}+2(2)^{3}\right)-(1+2)
$$

(don't include a C if you have
limits as they would cancel) $=32-3=29$
2. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2+k x)^{7}
$$

where \boldsymbol{k} is a constant. Give each term in its simplest form.
Given that the coefficient of x^{2} is 6 times the coefficient of x,
(b) find the value of k.
$\begin{aligned} & \text { a) Bring } 2 \text { out to make the } \\ & \text { expansion begin with a } 1 .\end{aligned}=2^{7}\left(1+\frac{k x}{2}\right)^{7}$

$$
\begin{aligned}
& \text { Using } \\
& \begin{aligned}
(1+x)^{n}=1+ & \frac{n x}{1!} & =2^{7}\left(1+7\left(\frac{k x}{2}\right)+\frac{7 \times 6}{2}\left(\frac{k x}{2}\right)^{2}\right) \ldots \ldots \ldots \\
& +\frac{n(n-1) x^{2}}{2!} & =128+448 k x+672 k^{2} x^{2} \ldots
\end{aligned} \\
&
\end{aligned} \begin{aligned}
&
\end{aligned}
$$

b) Therefore $\quad 448 \times 6 k=672 k^{2}$

$$
\frac{2688}{672}=k \quad k=4
$$

3.

$$
f(x)=(3 x-2)(x-k)-8
$$

where k is a constant.
(a) Write down the value of $f(k)$.

When $f(x)$ is divided by $(x-2)$ the remainder is 4

MathsGeeks

(b) Find the value of k.
(c) Factorise $f(x)$ completely.
a) Put kin for x

$$
f(k)=(3 k-2)(k-k)-8=-8
$$

b) Therefore $f(2)=4$

$$
f(2)=4(2-k)-8=-4 k=4 \quad k=-1
$$

c)

$$
\begin{aligned}
& f(x)=(3 x-2)(x+1)-8 \\
& f(x)=3 x^{2}-2 x+3 x-2-8 \\
& f(x)=3 x^{2}+x-10 \\
& f(x)=(3 x-5)(x+2)
\end{aligned}
$$

4 (a) Complete the table below, giving values of $\sqrt{ }\left(2^{X}+1\right)$ to 3 decimal places.

X	0	0.5	1	1.5	2	2.5	3
$\sqrt{ }\left(2^{X}+1\right)$	1.414	1.554	1.732	1.957	2.236	2.580	3

Figure 1 shows the region R which is bounded by the curve with equation $y=V(2 x+1$ 回), the x-axis and the lines $x=0$ and $x=3$
(b) Use the trapezium rule, with all the values from your table, to find an approximation for the area of R.
(c) By reference to the curve in Figure 1 state, giving a reason, whether your approximation in part (b) is an overestimate or an underestimate for the area of R.
a) Filled in table
b) Using

$$
\begin{aligned}
& y \approx \frac{h}{2}\left\{y_{0}+y_{n}+2\left(y_{1}+y_{2} \ldots . . y_{n-1}\right)\right\} \\
& y \approx \frac{0.5}{2}\{1.414+3 \\
& +2(1.554+1.732+1.957+2.236 \\
& +2.580)\}=6.133
\end{aligned}
$$

c) Overestimate as the trapezium strips are all above the curve and so it will be larger than the actual value.

MathsGeeks

5. The third term of a geometric sequence is $\mathbf{3 2 4}$ and the sixth term is 96
(a) Show that the common ratio of the sequence is $\frac{2}{3}$
(b) Find the first term of the sequence.
(c) Find the sum of the first 15 terms of the sequence.
(d) Find the sum to infinity of the sequence.
a) Using

$$
\begin{equation*}
u_{n}=a r^{n-1} \tag{1}
\end{equation*}
$$

Set up two equations

$$
\begin{aligned}
& 324=a r^{2} \\
& 96=a r^{5} \\
& 06
\end{aligned}
$$

Do (2) $\div(1)$
b) Fill r back into (1)

$$
\begin{array}{lrrr}
\frac{96}{324} & =r^{3} & r^{3}=\frac{8}{27} & r=\frac{2}{3} \\
324 & =a\left(\frac{2}{3}\right)^{2} & 324=\frac{4 a}{9} & a=729
\end{array}
$$

c) Using

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
S_{15}=\frac{729\left(1-\frac{2}{3}^{15}\right)}{1-\frac{2}{3}}=2182.0(1 . d . p)
$$

d) Using

$$
S_{\infty}=\frac{a}{1-r} \quad S_{\infty}=\frac{729}{1-\frac{2}{3}}=2187
$$

6. The circle C has equation

$$
x^{2}+y^{2}-6 x+4 y=12
$$

(a) Find the centre and the radius of C.

The point $P(-1,1)$ and the point $Q(7,-5)$ both lie on C.
(b) Show that $P Q$ is a diameter of C.

The point R lies on the positive y-axis and the angle $P R Q=90^{\circ}$.
(c) Find the coordinates of R.
a) Complete the

$$
x^{2}+y^{2}-6 x+4 y-12=(x-3)^{2}+(y+2)^{2}+k=0
$$ square for x and y

Cancel terms

$$
\begin{aligned}
& \mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}+4 \mathrm{y}-12=\mathrm{x}^{2}-6 \mathrm{x}+9+\mathrm{y}^{2}+4 \mathrm{y}+4+\mathrm{k} \\
& \quad=0 \\
& -12=9+4+k \quad k=-25
\end{aligned}
$$

Therefore

$$
(x-3)^{2}+(y+2)^{2}-25=0
$$

MathsGeeks

$$
(x-3)^{2}+(y+2)^{2}=5^{2}
$$

Compare with equation of a circle
$(\mathrm{x}-\mathrm{a})^{2}+(\mathrm{y}-\mathrm{b})^{2}=r^{2} \quad$ With centre (a, b) radius r
Therefore
b) PQ is a diameter
if it has length 10 and P and Q lie on C

Centre $(3,-2)$ and radius 5.
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(-5-1)^{2}+(7--1)^{2}}$
$=\sqrt{100}=10$

Put Q into C

$$
(7-3)^{2}+(-5+2)^{2}=16+9=5^{2}
$$

Put P into C

$$
(-1-3)^{2}+(1+2)^{2}=16+9=5^{2}
$$

c) As $P R Q$ is 90 and $P Q$ is a diameter R has to lie on C and $x=0$. Therefore

$$
\begin{aligned}
& (x-3)^{2}+(y+2)^{2}=5^{2} \\
& 9+(y+2)^{2}=5^{2} \\
& (y+2)^{2}=16 \\
& y+2= \pm 4 \quad y=2,-6 \quad y>0 \quad y=2
\end{aligned}
$$

7. (i) Solve, for $-180^{\circ} \leq \theta<180^{\circ}$,

$$
(1+\tan \theta)(5 \sin \theta-2)=0
$$

(ii) Solve, for $0 \leq x<360^{\circ}$

$$
4 \sin x=3 \tan x
$$

(I)Take each bit in turn

For tan you can add 180 degress or subtract 180 degrees indefinitely.
For sin in this region there is another result at 180 minus original value.
Therefore

$$
(1+\tan \theta)=0
$$

$$
\tan \theta=-1 \quad \theta=-45^{\circ}, 135^{\circ}
$$

$$
(5 \sin \theta-2)=0 \quad \sin \theta=\frac{2}{5} \quad \theta=23.58^{\circ}
$$

$$
156.42
$$

$$
\theta=-45^{\circ}, 135^{\circ}, 23.58^{\circ}, 156.42^{\circ}
$$

MathsGeeks

(ii) Re-arramge and using

$$
\tan x=\frac{\sin x}{\cos x}
$$

Take each bit in turn
For cos the next value is 360 minus the first value. Therefore

$$
4 \sin x-3 \frac{\sin x}{\cos x}=0 \quad \sin x\left(4-\frac{3}{\cos x}\right)=0
$$

$$
\begin{aligned}
& \sin x=0 \quad x=0,180^{\circ} \\
& 3=4 \cos x \quad x=\cos ^{-1} \frac{3}{4} \quad x=41.4^{\circ}, 318.6^{\circ} \\
& x=0,180^{\circ}, 41.4^{\circ}, 318.6^{\circ}
\end{aligned}
$$

8. (a) Find the value of y such that

$$
\begin{equation*}
\log _{2} y=-3 \tag{2}
\end{equation*}
$$

(b) Find the values of x such that

$$
\begin{equation*}
\frac{\log _{2} 32+\log _{2} 16}{\log _{2} x}=\log _{2} x \tag{5}
\end{equation*}
$$

a) Anti-logging
$y=2^{-3}=\frac{1}{8}$
b) Multiply up.
$\log _{2} 32+\log _{2} 16=\left(\log _{2} x\right)^{2}$
$\log _{2} 32+\log _{2} 16=\left(\log _{2} x\right)^{2}$
$5+4=\left(\log _{2} x\right)^{2}$
$9=\left(\log _{2} x\right)^{2}$
$\pm 3=\log _{2} x$
Anti-logging

$$
x=2^{3}, 2^{-3}=8, \frac{1}{8}
$$

9. Figure 2 shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height $h \mathbf{c m}$. The cross section is a sector of a circle. The sector has radius $r \mathbf{c m}$ and angle 1 radian.

The volume of the box is $300 \mathbf{c m}^{3}$.
(a) Show that the surface area of the box, $S \mathrm{~cm}^{2}$, is given by

$$
\begin{equation*}
S=r^{2}+\frac{1800}{r} \tag{5}
\end{equation*}
$$

(b) Use calculus to find the value of r for which S is stationary.
(c) Prove that this value of r gives a minimum value of S.
(d) Find, to the nearest cm^{2}, this minimum value of S.

MathsGeeks

a) Use the Volume to get rid Vol $=$ Area of base \times height of h
Area of sector

$$
\text { Area }=\frac{1}{2} r^{2} \theta
$$

$300=\frac{1}{2} r^{2} \times 1 \times h \quad h=\frac{600}{r^{2}}$
The surface area
$S=2 \times \frac{1}{2} r^{2} \times 1+2 r h+r \vartheta h$
$S=r^{2}+2 r h+r h$

Fill in h
$S=r^{2}+\frac{1800}{r}=r^{2}+1800 r^{-1}$
b) Stationary value at

$$
\frac{d S}{d r}=0
$$

$\frac{d S}{d r}=2 r-1800 r^{-2}=0 \quad 2 r=\frac{1800}{r^{2}}$
$r^{3}=900 \quad r=\sqrt[3]{900}$
c) If this is a minimum then $\frac{d^{2} s}{d r^{2}}>0$
d) Fill value of r into S
$\frac{d^{2} S}{d r^{2}}=2+3600 r^{3}>0$ so is a minimum
$S=900^{\frac{2}{3}}+\frac{1800}{900^{\frac{1}{3}}}=279.65 \mathrm{~cm}^{2}$

