MathsGeeks

1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(3-x)^{6}
$$

and simplify each term.

1. Bring the 3 out as the binomial must start with a 1

$$
\begin{aligned}
& (3-x)^{6}=3^{6}\left(1-\frac{x}{3}\right)^{6} \\
& (1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\cdots \\
& 3^{6}\left(1-\frac{x}{3}\right)^{6}=3^{6}\left(1+6\left(-\frac{x}{3}\right)+\frac{6 \times 5}{2}\left(-\frac{x}{3}\right)^{2}\right) \\
& =3^{6}\left(1-2 x+\frac{15}{9} x^{2} \ldots . .\right) \\
& =729-1458 x+1215 x^{3} \ldots
\end{aligned}
$$

2. (a) Show that the equation

$$
5 \sin x=1+2 \cos ^{2} x
$$

can be written in the form

$$
\begin{equation*}
2 \sin ^{2} x+5 \sin x-3=0 \tag{2}
\end{equation*}
$$

(b) Solve, for $0<x<360^{\circ}$,

$$
\begin{equation*}
2 \sin ^{2} x+5 \sin x-3=0 \tag{4}
\end{equation*}
$$

2a) Using

$$
\cos ^{2} x=1-\sin ^{2} x
$$

$$
\cos ^{2} x+\sin ^{2} x=1
$$

Therefore

$$
\begin{aligned}
& 5 \sin x=1+2\left(1-\sin ^{2} x\right) \\
& 2 \sin ^{2} x+5 \sin x-3=0
\end{aligned}
$$

b) Let $u=\sin x$

$$
2 u^{2}+5 u-3=0
$$

Factorise

$$
(2 u-1)(u+3)=0
$$

$$
u=\frac{1}{2} \text { or } u=-3
$$

Therefore

$$
\begin{aligned}
& \sin x=\frac{1}{2} \text { or } \sin x \neq-3(\text { as not in range }) \\
& x_{1}=\sin ^{-1} \frac{1}{2}=30^{\circ}
\end{aligned}
$$

In region for $0<x<360^{\circ}$,

$$
\text { From the curve you can see that } \quad x_{2}=180-x_{1}=150^{\circ}
$$

3.

$$
f(x)=2 x^{3}+a x^{2}+b x-6
$$

where a and b are constants.

Page 1 of 6

When $f(x)$ is divided by $(2 x-1)$ the remainder is $\mathbf{- 5}$.
When $\mathrm{f}(x)$ is divided by $(x+2)$ there is no remainder.
(a) Find the value of a and the value of b.
(b) Factorise $f(x)$ completely.

3a) Sub in $x=\frac{1}{2}$
$f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+a\left(\frac{1}{2}\right)^{2}+b\left(\frac{1}{2}\right)-6=-5$
$f\left(\frac{1}{2}\right)=\frac{2}{8}+\frac{a}{4}+\frac{b}{2}-6=-5$
$1+a+2 b-4=0$
$a+2 b-3=0$
Sub in $x=-2$
$f(-2)=2(-2)^{3}+a(-2)^{2}+b(-2)-6=0$
$f(-2)=-16+4 a-2 b-6=0$
$4 a-2 b-22=0$
$5 a-25=0 \quad a=5$
$5+2 b-3=0 \quad 2+2 b=0 \quad b=-1$
$f(x)=2 x^{3}+5 x^{2}-x-6$
b) As $x+2$ has no remainder it is a factor.
Do (1)+(2)
Sub back into (1)
Therefore

Therefore
And factorise the quadratic
$\frac{2 x^{2}+x-3}{(x+2) \sqrt{2 x^{3}+5 x^{2}-x}-6}$
$\frac{2 x^{3}+4 x^{2} \quad \text { (subtract) }}{x^{2}-x-6}$

$x^{2}+2 x \quad$ (subtract)
$-3 x-6$
$-3 x-6$
0

$f(x)=(x+2)\left(2 x^{2}+x-3\right)$
$f(x)=(x+2)(2 x+3)(x-1)$
4. An emblem, as shown in Figure 1, consists of a triangle $A B C$ joined to a sector $C B D$ of a circle with radius 4 cm and centre B. The points A, B and D lie on a straight line with $A B=5$ cm and $B D=4 \mathrm{~cm}$. Angle $B A C=0.6$ radians and $A C$ is the longest side of the triangle $A B C$.
(a) Show that angle $A B C=1.76$ radians, correct to 3 significant figures.
(b) Find the area of the emblem.

MathsGeeks

4a) Find ACB then do $\pi-A C B$ 0.6 rad . Using

$$
\frac{\sin 0.6}{4}=\frac{\sin C}{5}
$$

$$
\frac{\sin A}{a}=\frac{\sin C}{c}
$$

b) Area of emblem is areas of triangle plus area of sector. Area

$$
\begin{aligned}
& \sin C=\frac{5 \sin 0.6}{4} \\
& C=0.784 \\
& A B C=\pi-0.6-0.784=1.76(3 . s . f) \\
& \text { Area }=\frac{1}{2} a b \sin C=\frac{1}{2} \times 5 \times 4 \sin (1.76)
\end{aligned}
$$ of triangle.

$$
\text { Area }=9.82
$$

Area of sector
Where $\theta=\pi-1.76$

$$
\text { Area }=\frac{1}{2} r^{2} \theta
$$

Total Area
Area $=\frac{1}{2} 4^{2}(1.76)=11.0527$
Total Area $=9.82+11.05=20.87 \mathrm{~cm}^{2}$
5. (a) Find the positive value of x such that

$$
\begin{equation*}
\log _{x} 64=2 \tag{2}
\end{equation*}
$$

(b) Solve for x

$$
\log _{2}(11-6 x)=2 \log _{2}(x-1)+3
$$

5a) Using if $\log _{a} b=c$ then $a^{c}=b$

b) Using
 $a \log _{b} c=\log _{b} c^{a}$

Using
$\log a-\log b=\log \frac{a}{b}$
$\log _{2} \frac{(11-6 x)}{(x-1)^{2}}=3$

Anti-logging

Therefore

$$
\begin{aligned}
& \frac{(11-6 x)}{(x-1)^{2}}=2^{3} \\
& (11-6 x)=8(x-1)^{2} \\
& 8 x^{2}-10 x-3=0 \\
& (4 x+1)(2 x-3)=0 \\
& x=-\frac{1}{4}, x=\frac{3}{2}
\end{aligned}
$$

6. A car was purchased for $£ 18000$ on 1st January. On 1st January each following year, the value of the car is $\mathbf{8 0 \%}$ of its value on 1st January in the previous year.
(a) Show that the value of the car exactly $\mathbf{3}$ years after it was purchased is $£ 9216$.

Page 3 of 6

MathsGeeks

The value of the car falls below $£ 1000$ for the first time \boldsymbol{n} years after it was purchased.
(b) Find the value of n.

An insurance company has a scheme to cover the maintenance of the car.

The cost is $\mathbf{£ 2 0 0}$ for the first year, and for every following year the cost increases by $\mathbf{1 2 \%}$ so that for the 3rd year the cost of the scheme is $\mathbf{£ 2 5 0 . 8 8}$
(c) Find the cost of the scheme for the 5th year, giving your answer to the nearest penny.
(d) Find the total cost of the insurance scheme for the first 15 years.

6 a) Geometric series with $\mathrm{a}=18000$ and $\mathrm{r}=0.8$
b) Using $u_{n}=a r^{n-1}$

$$
u_{n}=a r^{n-1}=18000 \times(0.8)^{2}=9216
$$

$$
1000>18000(0.8)^{n}
$$

$$
\frac{1}{18}>(0.8)^{n}
$$

$$
\log _{0.8} \frac{1}{18}>n
$$

$$
\mathrm{n}=12.95 \text { so } \mathrm{n}=13 \text { as must be integer. }
$$

c) Using $a=200$ and $r=1.12$

$$
u_{3}=200(1.12)^{2}=£ 314.70
$$

d) Using

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
S_{15}=\frac{200\left(1-r^{15}\right)}{1-r}=£ 7455.94
$$

7. The curve C has equation $y=x^{2}-5 x+4$. It cuts the x-axis at the points L and M as shown in Figure 2.
(a) Find the coordinates of the point L and the point M.
(b) Show that the point $N(5,4)$ lies on C.
(c) Find $\int\left(x^{2}-5 x+4\right) d x$.

The finite region R is bounded by $L N, L M$ and the curve C as shown in Figure 2.
(d) Use your answer to part (c) to find the exact value of the area of R.

7a) At x-axis $y=0$ therefore

$$
\begin{aligned}
& x^{2}-5 x+4=0 \\
& (x-4)(x-1)=0 \quad x=4 \text { or } x=1
\end{aligned}
$$

MathsGeeks

So
b) Substitute values into C to show they work
c) Using

$$
\frac{1}{n+1} x^{n+1}
$$

$$
\int x^{2}-5 x+4 d x=\frac{x^{3}}{3}-\frac{5}{2} x^{2}+4 x+c
$$

d) Area of R is Area of triangle minus area under curve.
Area under curve

$$
\begin{aligned}
& L(1,0) \text { and } \quad M(4,0) \\
& y=5^{2}-5(5)+4=25-25+4=4 \quad Q E D
\end{aligned}
$$

Area of triangle $=\frac{1}{2}(5-1) 4=8$
$=\left[\frac{x^{3}}{3}-\frac{5}{2} x^{2}+4 x\right]_{4}^{5}$
$=\left[\frac{125}{3}-\frac{125}{2}+20\right]-\left[\frac{64}{3}-\frac{5(16)}{2}+4(4)\right]$
$=\frac{11}{6}$
Area of Region R

$$
=8-\frac{11}{6}=\frac{37}{6}
$$

8. Figure 3 shows a sketch of the circle \boldsymbol{C} with centre \boldsymbol{N} and equation

$$
(x-2)^{2}+(y+1)^{2}=\frac{169}{4}
$$

(a) Write down the coordinates of \boldsymbol{N}.
(b) Find the radius of C.

The chord $A B$ of C is parallel to the x-axis, lies below the x-axis and is of length 12 units as shown in Figure 3.
(c) Find the coordinates of \boldsymbol{A} and the coordinates of B.
(d) Show that angle $A N B=134.8^{\circ}$, to the nearest 0.1 of a degree.

The tangents to C at the points A and B meet at the point P.
(e) Find the length $A P$, giving your answer to 3 significant figures.

8 a) Compare with Then
b) By comparison
c) By observation of triangle ANB x coordinate of $A=2-6=-4$ and $B=2+6=8$

$$
\begin{aligned}
& (\mathrm{x}-\mathrm{a})^{2}+(\mathrm{y}-\mathrm{b})^{2}=r^{2} \quad \text { With centre }(a, b) \text { radius } r \\
& \mathrm{a}=2 \text { and } \mathrm{b}=-1
\end{aligned}
$$

$$
r^{2}=\frac{169}{4} \quad r=\sqrt{\frac{169}{4}}=\frac{13}{2}=6.5
$$

To find y observe

6

Page 5 of 6

MathsGeeks

So y of A and B
So $A(-4,-3.5), B(8,-3.5)$
d) Observe ANB=2ANG
e) Observe a right angle triangle

$$
\begin{aligned}
\sin \theta=\frac{6}{6.5} & \theta
\end{aligned}=\sin ^{-1} \frac{6}{6.5} \quad \theta=67.38^{\circ}
$$

$$
\begin{aligned}
& 6.5^{2}=6^{2}+y^{2} \quad y=2.5 \\
& y=-1-2.5=-3.5
\end{aligned}
$$

Therefore

0

$$
\tan 67.38=\frac{o}{6.5} \quad o=6.5 \tan 67.38 \quad o=15.6=A P
$$

9. The curve C has equation

$$
y=12 \sqrt{x}-x^{\frac{3}{2}}-10, \quad x>0
$$

(a) Use calculus to find the coordinates of the turning point on C.
(b) Find $\frac{d^{2} y}{d x^{2}}$
(c) State the nature of the turning point.

9a) At turning point $\frac{d y}{d x}=0$
Using

$$
n x^{n-1}
$$

$$
y=12 x^{\frac{1}{2}}-x^{\frac{3}{2}}-10
$$

$n x^{n-1}$

$$
\frac{d y}{d x}=12 \frac{1}{2} x^{-\frac{1}{2}}-\frac{3}{2} x^{\frac{1}{2}}=0
$$

Multiply by 2

$$
\begin{aligned}
& 12 x^{-\frac{1}{2}}-3 x^{\frac{1}{2}}=0 \\
& 12 x^{-\frac{1}{2}}=3 x^{\frac{1}{2}} \quad \frac{12}{\sqrt{x}}=3 \sqrt{x} \quad 12=3 x \quad x=4
\end{aligned}
$$

When $x=4$

$$
y=124^{\frac{1}{2}}-4^{\frac{3}{2}}-10=24-8-10=6
$$

Coordinates

$$
(4,6)
$$

$\frac{d^{2} y}{d x^{2}}=6\left(-\frac{1}{2}\right) x^{-\frac{3}{2}}-\frac{3}{2} \times \frac{1}{2} x^{-\frac{1}{2}}=-3 x^{-\frac{3}{2}}-\frac{3}{4} x^{-\frac{1}{2}}$
At turning point $x=4$

$$
\frac{d^{2} y}{d x^{2}}=-3(4)^{-\frac{3}{2}}-\frac{3}{4}(4)^{-\frac{1}{2}}=-\frac{3}{8}-\frac{3}{8}=-\frac{6}{8}=-\frac{3}{4}<0
$$

If $\frac{d^{2} y}{d x^{2}}<0$ the turning point is a maximum
(Note if $\frac{d^{2} y}{d x^{2}}>0$ the turning point would be a minimum).

Page 6 of 6
2010-Jan-C2-Edexcel
Copyright©2012 Prior Kain Ltd

