MathsGeeks

1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(3-2 x)^{5}$, giving each term in its simplest form.
2. Bring the 3 out as it must start with a 1

$$
\begin{aligned}
& (3-2 x)^{5}=3^{5}\left(1-\frac{2}{3} x\right)^{5} \\
& (1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\cdots \\
& 3^{5}\left(1-\frac{2}{3} x\right)^{5}=3^{5}\left(1+5\left(-\frac{2}{3} x\right)+\frac{5 \times 4}{2}\left(-\frac{2}{3} x\right)^{2} \ldots\right. \\
& =3^{5}\left(1-\frac{10}{3} x+10 \times \frac{4}{9} x^{2} \ldots\right) \\
& =243-810 x+1080 x^{2} \ldots
\end{aligned}
$$

2. Figure 1 shows part of the curve C with equation

$$
y=(x+1)(4-x)
$$

The curve intersects the x-axis at $x=-1$ and $x=4$. The region R, shown shaded in Figure 1 , is bounded by C and the x-axis.

Use calculus to find the exact area of R.
2. Area under the curve is

$$
\int_{a}^{b} y d x
$$

$$
\int_{-1}^{4}(x+1)(4-x) d x=\int_{-1}^{4} 4 x+4-x-x^{2} d x
$$

Using

$$
\begin{aligned}
\frac{1}{n+1} x^{n+1} & =\int_{-1}^{4} 3 x+4-x^{2} d x=\left[\frac{3}{2} x^{2}+4 x-\frac{x^{3}}{3}\right]_{-1}^{4} \\
& =\left[24+16-\frac{64}{3}\right]-\left[\frac{3}{2}-4+\frac{1}{3}\right] \\
& =\frac{125}{6}
\end{aligned}
$$

3.

$$
y=\sqrt{ }\left(10 x-x^{2}\right)
$$

(a) Complete the table below, giving the values of \boldsymbol{y} to $\mathbf{2}$ decimal places.

x	1	1.4	1.8	2.2	2.6	3
y	3	3.47	3.84	4.14	4.39	4.58

(b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of
Page 1 of 6
2009-Jan-C2-Edexcel
Copyright@2012 Prior Kain Ltd

MathsGeeks

$$
\int_{1}^{3} \sqrt{10 x-x^{2}} d x
$$

3a) Simply put value of x into formula for y
b) Using

$$
\int_{1}^{3} \sqrt{10 x-x^{2}} d x \approx \frac{h}{2}\left\{y_{0}+y_{n}+2\left(y_{1}+y_{2} \ldots . . y_{n-1}\right)\right\}
$$

$$
\begin{aligned}
\mathrm{H} \text { is the band width }=1.4- & \approx \frac{0.4}{2}\{3+4.58+2(3.47+3.84+4.14+4.39\} \\
& \approx 0.2(39.26) \\
& \approx 7.852(4 . s . f)
\end{aligned}
$$

4. Given that $0<x<4$ and

$$
\log _{5}(4-x)-2 \log _{5} x=1
$$

find the value of x.
4. Using

$$
\log _{5}(4-x)-\log _{5} x^{2}=1
$$

$$
\operatorname{alog}_{b} c=\log _{b} c^{a}
$$

$$
\begin{aligned}
& \text { Using } \\
& \qquad \log a-\log b=\log \frac{a}{b} \quad \log _{5} \frac{(4-x)}{x^{2}}=1
\end{aligned}
$$

Anti-logging

$$
\frac{(4-x)}{x^{2}}=5^{1} \quad 4-x=5 x^{2}
$$

$$
5 x^{2}+x-4=0
$$

$$
(5 x-4)(x+1)=0
$$

So
But in the question we are told $0<x<4$ $x=\frac{4}{5}$ or $x=-1$
$x=\frac{4}{5}$ therefore
5. The points $P(-3,2), Q(9,10)$ and $R(a, 4)$ lie on the circle C, as shown in Figure 2. Given that $P R$ is a diameter of C,
(a) show that $a=13$,
(b) find an equation for C.

5 a) Using Pythagoras. First find PQ

MathsGeeks

$$
\begin{aligned}
& P Q=\sqrt{12^{2}+8^{2}} \quad P Q^{2}=144+64=2-8 \\
& P R^{2}=P Q^{2}+Q R^{2} \\
& (a--3)^{2}+(4-2)^{2}=208+(a-9)^{2}+(4-10)^{2} \\
& a^{2}+6 a+9+4=208+a^{2}-18 a+81+36 \\
& 24 a=81+36+208-13 \\
& 24 a=312 \\
& a=13
\end{aligned}
$$

b) Centre is the midpoint of PR
$M\left(\frac{13-3}{2}, \frac{4+2}{2}\right)=M(5,3)$
c) Radius is the length PM
$P M=\sqrt{ }\left((5--3)^{2}+(3-2)^{2}\right)$ ($\mathrm{P}(-3,2)$, $\mathrm{M}(5,3)$

$$
P M=\sqrt{65}
$$

Therefore equation of circle is

$$
(x-5)^{2}+(y-3)^{2}=65
$$

6.

$$
f(x)=x^{4}+5 x^{3}+a x+b
$$

where \boldsymbol{a} and \boldsymbol{b} are constants.

The remainder when $f(x)$ is divided by $(x-2)$ is equal to the remainder when $f(x)$ is divided by ($x+1$).
(a) Find the value of a.

Given that $(x+3)$ is a factor of $f(x)$,
(b) find the value of b.

6 a) Put $\mathrm{x}=2$ in and the $\mathrm{x}=-\quad f(2)=2^{4}+5(2)^{3}+2 a+b$
1
Make them equal

$$
\begin{aligned}
& f(-1)=(-1)^{4}+5(-1)^{3}-a+b \\
& 2^{4}+5(2)^{3}+2 a+b=(-1)^{4}+5(-1)^{3}-a+b \\
& 16+40+2 a=1-5-a \\
& 3 a=-60 \\
& a=-20 \\
& f(-3)=(-3)^{4}+5(-3)^{3}-20(-3)+b=0 \\
& f(-3)=81-135+60+b=0 \\
& b=-6 \\
& f(x)=x^{4}+5 x^{3}-20 x-6
\end{aligned}
$$

b) Using factor theorem

Therefore
7. The shape $B C D$ shown in Figure 3 is a design for a logo.

The straight lines $D B$ and $D C$ are equal in length. The curve $B C$ is an arc of a circle with centre A and radius 6 cm . The size of $\angle B A C$ is 2.2 radians and $A D=4 \mathrm{~cm}$.

Find
(a) the area of the sector $B A C$, in cm^{2},
(b) the size of $\angle D A C$, in radians to 3 significant figures,
(c) the complete area of the logo design, to the nearest cm^{2}.

7 a) Using
Area $=\frac{1}{2} r^{2} \theta$
b) Observe $D A C+$
$D A B+B A C=2 \pi$
Therefore

$$
\text { Area }=\frac{1}{2} 6^{2}(2.2)=39.6 \mathrm{~cm}^{2}
$$

And DAC=DAB
$2 D A C+B A C=2 \pi$
$2 D A C+2.2=2 \pi$
$D A C+2.2=\pi-1.1=2.04$ radians
c) Total Area $=2 \times$ Area of

DAC+Area of Sector
Area $=2 \frac{1}{2} a b \sin C+39.6$

$$
\begin{aligned}
& \text { Area }=6 \times 4 \times \sin 2.04+39.6 \\
& \text { Area }=61 \mathrm{~cm}^{2}
\end{aligned}
$$

8. (a) Show that the equation

$$
\begin{align*}
& 4 \sin ^{2} x+9 \cos x-6=0 \\
& 4 \cos ^{2} x-9 \cos x+2=0 \tag{2}
\end{align*}
$$

can be written as
(b) Hence solve, for $0<x<720^{\circ}$,

$$
4 \sin ^{2} x+9 \cos x-6=0
$$

giving your answers to 1 decimal place.

8 a) Using

$$
\cos ^{2} x+\sin ^{2} x=1
$$

$$
\begin{aligned}
& 4\left(1-\cos ^{2} x\right)+9 \cos x-6=0 \\
& 4-4 \cos ^{2} x+9 \cos x-6=0 \\
& 4 \cos ^{2} x-9 \cos x+2=0
\end{aligned}
$$

b) Using proof of part a) $4 u^{2}-9 u+2=0$ and factorise using $u=\cos x$

Page 4 of 6

MathsGeeks

$$
(4 u-1)(u-2)=0 \quad u=\frac{1}{4} \text { or } u=2
$$

Therefore

$$
\cos x=\frac{1}{4} \text { or } \cos x=2 \text { but } \cos x \neq 2 \text { so } \cos x=\frac{1}{4} \text { only }
$$

In the region $0<x<$ 720°

$$
x_{1}=\cos ^{-1}\left(\frac{1}{4}\right)=75.5 \text { (1.d.p) }
$$

By observation of the cos

$$
\begin{aligned}
& x_{2}=360-75.52=284.5(1 . d . p) \\
& x_{3}=360+75.52=435.5(1 . d . p) \\
& x_{4}=720-75.52=644.5(1 . d . p)
\end{aligned}
$$

9. The first three terms of a geometric series are ($k+4$), k and ($2 k-15$) respectively, where k is a positive constant.
(a) Show that $\boldsymbol{k}^{2}-7 \boldsymbol{k}-60=0$.
(b) Hence show that $\boldsymbol{k}=\mathbf{1 2}$.
(c) Find the common ratio of this series.
(d) Find the sum to infinity of this series.

9 a) Using
$a=k+4$
$a r=k(2)$
$a r^{2}=2 k-15$

From (2) and (1)
$r=\frac{k}{a}=\frac{k}{k+4}$
Substitute into 3

$$
(k+4)\left(\frac{k}{k+4}\right)^{2}=2 k-15
$$

$\frac{k^{2}}{k+4}=2 k-15$
$k^{2}=(k+4)(2 k-15)$
$k^{2}=2 k^{2}+8 k-15 k-60$
$0=k^{2}-7 k-60$
b) Factorise

But in question $\mathrm{k}>0$ therefore
c)
d) Using

$$
S_{\infty}=\frac{a}{1-r}
$$

$0=(k-12)(k+5) \quad k=12$ or $k=-5$
$k=12$

$$
r=\frac{k}{k+4}=\frac{12}{16}=\frac{3}{4}
$$

$S_{\infty}=\frac{k+4}{1-\frac{3}{4}}=\frac{16}{1 / 4}=64$
10. A solid right circular cylinder has radius $r \mathrm{~cm}$ and height $h \mathbf{c m}$. The total surface area of the cylinder is $800 \mathrm{~cm}^{2}$.
(a) Show that the volume, $\mathrm{V} \mathrm{cm}^{3}$, of the cylinder is given by

$$
V=400 r-\pi r^{3}
$$

Given that r varies.
(b) Use calculus to find the maximum value of V, to the nearest cm^{3}.
(c) Justify that the value of V you have found is a maximum.

10 a) Use the surface area Surface is $800=2 \times \pi r^{2}+2 \pi r h$ to get rid of h.
Rearrange for h
$800-2 \pi r^{2}=2 \pi r h$
$\frac{800-2 \pi r^{2}}{2 \pi r}=h$
Substitute into volume
Volume $=\pi r^{2} h=\pi r^{2}\left(\frac{800-2 \pi r^{2}}{2 \pi r}\right)=\frac{r}{2}\left(800-2 \pi r^{2}\right)$
$V=400 r-\pi r^{3}$
b) At the maximum value $\frac{d V}{d r}=0$. Using
$\frac{d V}{d r}=400-3 \pi r^{2}=0$
$n x^{n-1}$.
Rearrange for r

$$
\begin{aligned}
& 3 \pi r^{2}=400 \\
& r=\sqrt{\frac{400}{3 \pi}}
\end{aligned}
$$

Find V for this r

$$
V=400 \sqrt{\frac{400}{3 \pi}}-\pi\left(\sqrt{\frac{400}{3 \pi}}\right)^{3}=1737
$$

(c) To justify a maximum $\frac{d^{2} V}{d r^{2}}=-6 \pi r<0$ as this is clearly negative.
then $\frac{d^{2} V}{d r^{2}}<0$.
Always include the sentence that says

