MathsGeeks

1. (a) Find the remainder when

$$
x^{3}-2 x^{2}-4 x+8
$$

is divided by
(i) $x-3$,
(ii) $x+2$.
(b) Hence, or otherwise, find all the solutions to the equation

$$
x^{3}-2 x^{2}-4 x+8=0
$$

1a) (i) Substitute in $x=3$

$$
3^{3}-2 \times 3^{2}-4 \times 3+8=27-18-12+8=5
$$

(i) Substitute in $x=-2$

$$
2^{3}-2 \times 2^{2}-4 \times 2+8=8-8-8+8=0
$$

b) As $x+2$ is a factor, factorise as follows.

$$
\begin{array}{r}
\frac{x^{2}-4 x+4}{(x+2) \sqrt{x^{3}}-2 x^{2}-4 x+8} \\
\frac{x^{3}+2 x^{2} \quad \text { (subtract) }}{-4 x^{2}-4 x+8}
\end{array}
$$

$$
\frac{-4 x^{2}-8 x \quad \text { (subtract) }}{4 x+8}
$$

$$
\frac{4 x+8 \quad \text { (subtract) }}{0}
$$

The factors are

$$
\begin{aligned}
& x^{3}-2 x^{2}-4 x+8=0=(x+2)\left(x^{2}-4 x+4\right) \\
& =(x+2)(x-2)^{2}
\end{aligned}
$$

Therefore $\mathrm{x}=2$ or $\mathrm{x}=-2$. There is a double root at $\mathrm{x}=2$.
2. The fourth term of a geometric series is 10 and the seventh term of the series is $\mathbf{8 0}$. For this series, find
(a) the common ratio,
(b) the first term,
(c) the sum of the first 20 terms, giving your answer to the nearest whole number.

2a) Using

$$
u_{n}=a r^{n-1}
$$

Divide (2) by (1)
b) Substitute into (1)

$$
\begin{equation*}
10=a r^{3} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
80=a r^{6} \tag{2}
\end{equation*}
$$

$\frac{80}{10}=\frac{a r^{6}}{a r^{3}}$
$10=1$

$$
\begin{array}{ll}
r^{3}=8 & r=2 \\
a=1.25 &
\end{array}
$$

MathsGeeks

c) Using

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{aligned}
& S_{20}=\frac{1.25\left(1-2^{20}\right)}{1-2}=1.25\left(2^{20}-1\right) \\
& S_{20}=1310718.75=1310719 \text { (nearest whole number) }
\end{aligned}
$$

3. (a) Find the first 4 terms of the expansion of $\left(1+\frac{x}{2}\right)^{10}$ in ascending powers of x, giving each term in its simplest form.
(b) Use your expansion to estimate the value of $(\mathbf{1 . 0 0 5})^{10}$, giving your answer to 5 decimal places.

3 a) Using

$$
\begin{aligned}
& (1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+ \\
& \left(1+\frac{x}{2}\right)^{10}=1+10 \frac{x}{2}+\frac{10 \times 9}{2}\left(\frac{x}{2}\right)^{2}+\frac{10 \times 9 \times 8}{6}\left(\frac{x}{2}\right)^{3} \ldots \\
& =1+5 x+\frac{45}{4} x^{2}+15 x^{3} \ldots \\
& \frac{x}{2}=0.005 \quad x=0.01 \\
& =1+5(0.01)+\frac{45}{4}(0.01)^{2}+15(0.01)^{3} \ldots \\
& =1.05114(5 . \text { d.p) }
\end{aligned}
$$

b) Observe that $(1.005)^{10}$ can
be written as $(1+0.005)^{10}$
then by comparison
Sub this into the expansion
4. (a) Show that the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1
$$

can be written as

$$
5 \sin ^{2} \theta=3
$$

(b) Hence solve, for $\mathbf{0}^{\circ}<\boldsymbol{\theta}<360^{\circ}$, the equation

$$
3 \sin ^{2} \theta-2 \cos ^{2} \theta=1
$$

giving your answers to 1 decimal place.

4 a) Using

$$
\cos ^{2} x+\sin ^{2} x=1
$$

$$
\begin{aligned}
& 3 \sin ^{2} \theta-2\left(1-\sin ^{2} x\right)=1 \\
& 5 \sin ^{2} \theta-2=1 \\
& 5 \sin ^{2} \theta=3
\end{aligned}
$$

MathsGeeks

b) Using the answer to part a)

$$
\begin{aligned}
& \sin ^{2} \theta=\frac{3}{5} \quad \sin \theta= \pm \sqrt{ }\left(\frac{3}{5}\right) \\
& \theta_{1}=\sin ^{-1}\left(\sqrt{\frac{3}{5}}\right)=50.8^{\circ}(1 . d . p \\
& \theta_{2}=180-\theta_{1}=129.2^{\circ}(1 . d . p) \\
& \theta_{3}=180+\theta_{1}=230.8^{\circ}(1 . d . p) \\
& \theta_{4}=360-\theta_{1}=309.2^{\circ}(1 . d . p)
\end{aligned}
$$

$$
\text { Start with } \sin \theta=+\sqrt{ }\left(\frac{3}{5}\right) \quad \theta_{1}=\sin ^{-1}\left(\sqrt{\frac{3}{5}}\right)=50.8^{\circ} \text { (1.d.p) }
$$

By observation of the sin curve it is apparent that

$$
\begin{array}{ll}
\text { Also } \sin \theta=-\sqrt{\frac{3}{5}} & \theta_{3}=180+\theta_{1}=230.8^{\circ}(1 . d . p) \\
& \theta_{4}=360-\theta_{1}=309.2^{\circ}(1 . d . p)
\end{array}
$$

5. Given that a and b are positive constants, solve the simultaneous equations

$$
\begin{gathered}
a=3 b \\
\log _{3} a+\log _{3} b=2
\end{gathered}
$$

Give your answers as exact numbers.
5. Sub first into second

Using

$$
\log a+\log b=\log a b
$$

Anti-logging
But $b>0$ (in question) so
$\log _{3} 3 b+\log _{3} b=2$.
$\log _{3} 3 b^{2}=2$
$3 b^{2}=3^{2} \quad b= \pm \sqrt{3}$
$b=\sqrt{3}$ and $a=3 \sqrt{3}$
6. Figure 1 shows 3 yachts A, B and C which are assumed to be in the same horizontal plane.

Yacht B is 500 m due north of yacht A and yacht C is 700 m from A. The bearing of C from A is 015°.
(a) Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

The bearing of yacht C from yacht B is ϑ°, as shown in Figure 1.
(b) Calculate the value of ϑ.

6 a) Using the cos formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
a^{2}=500^{2}+700^{2}-2 \times 500 \times 700 \cos 15^{\circ}
$$

$$
\begin{aligned}
& a^{2}=63851.9216 \\
& a=253 m(3 . s . f)
\end{aligned}
$$

Page 3 of 6

MathsGeeks

b) Using

$$
\frac{\sin A}{a}=\frac{\sin B}{b} \quad \begin{aligned}
& \frac{700 \sin 15}{252.69}=\sin B \\
& \\
& \\
& \\
& \\
& 45.716978=\sin B
\end{aligned}
$$

7. a) At x-axis $y=0$
b) At L solve simultaneously
When $x=0$
$0=6 x-x^{2}=x(6-x) \quad x=0$ and $x=6$
$2 x=6 x-x^{2} \quad x^{2}-4 x=x(x-4)$
$x=0$ or $x=4$
When $x=4$
$y=2 x=0 \quad$ Coordinates $(0,0)$
$y=2 x=8 \quad$ Coordiantes $(4,8)$
c) Area of $\mathrm{R}=$ Area under curve minus Area of triangle.

Area under curve

$$
\begin{aligned}
& \int_{0}^{4} y d x=\int_{0}^{4} 6 x-x^{2} d x=\left[\frac{6 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{4} \\
= & \frac{6 \times 16}{2}-\frac{64}{3}-0=26 \frac{2}{3}
\end{aligned}
$$

Area of Triangle
Area $=\frac{1}{2}$ base \times height $=\frac{1}{2} \times 4 \times 8=16$
Therefore Area of R
$R=26 \frac{2}{3}-16=10 \frac{2}{3}$
8. A circle C has centre $M(6,4)$ and radius 3 .
(a) Write down the equation of the circle in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Figure 3 shows the circle C. The point T lies on the circle and the tangent at T passes through the point $P(12,6)$. The line $M P$ cuts the circle at Q.
(b) Show that the angle $T M Q$ is 1.0766 radians to 4 decimal places.

The shaded region TPQ is bounded by the straight lines $T P, Q P$ and the arc $T Q$, as shown in Figure 3.
(c) Find the area of the shaded region TPQ. Give your answer to 3 decimal places.

8a) Sub in centre and radius
b) Use trig first to find PM

$$
(x-6)^{2}+(y-4)^{2}=3^{2}=9
$$

$$
P M=\sqrt{ }\left((12-6)^{2}+(6-4)^{2}\right)=\sqrt{40}
$$

MathsGeeks

c) Area of TPQ=Area of TMP Area of sector

$$
\cos \theta=\frac{3}{\sqrt{40}} \quad \theta=\cos ^{-1} \frac{3}{\sqrt{40}}=1.0766 \mathrm{rads}
$$

$$
\text { Area of } \mathrm{TMP}=\frac{1}{2}(T P) \times 3
$$

$$
\sin (1.7066)=\frac{T P}{\sqrt{40}} \quad T P=5.57
$$

$$
\text { Area of } \mathrm{TMP}=8.352
$$

Area of sector using

$$
\text { Area }=\frac{1}{2} r^{2} \theta
$$

Therefore

Area of TMP $=\frac{1}{2} \times 3^{2} \times(1.0766)=4.8447$

Area of TPQ=8.352-4.8447=3.507 (3.d.p)
9. Figure 4 shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is $100 \mathrm{~m}^{\mathbf{3}}$.
(a) Show that the area $A m^{2}$ of the sheet metal used to make the tank is given by

$$
\begin{equation*}
A=\frac{300}{x}+2 x^{2} \tag{4}
\end{equation*}
$$

(b) Use calculus to find the value of \boldsymbol{x} for which \boldsymbol{A} is stationary.
(c) Prove that this value of x gives a minimum value of A.
(d) Calculate the minimum area of sheet metal needed to make the tank.

9 a) Use volume to eliminate y
Put y into surface area
Vol $=x \times x \times y=100 \quad y=\frac{100}{x^{2}}$
$A=2 x^{2}($ sides $)+2 x y($ sides $)+x y($ base $)$
$A=2 x^{2}+3 x y$
$A=2 x^{2}+3 x \frac{100}{x^{2}}=\frac{300}{x}+2 x^{2}$
b) At stationary point $\frac{d A}{d x}=0$

$$
A=300 x^{-1}+2 x^{2}
$$

Using

$$
n x^{n-1}
$$

$\frac{d A}{d x}=-1(300) x^{-2}+4 x=0$
$\frac{300}{x^{2}}=4 x \quad x^{3}=\frac{300}{4} \quad x=\sqrt[3]{\frac{300}{4}}=4.22$
c) For a minimum value $\frac{d^{2} A}{d x^{2}}>0 \quad \frac{d^{2} A}{d x^{2}}=-1 \times-2 \times(300) x^{-3}+4=\frac{600}{x^{3}}+4>0$
d) Find A for $x=4.2171$ by putting in formula

$$
A=\frac{300}{4.2171}+2(4.2171)^{2}
$$

Page 5 of 6

MathsGeeks

www.mathsgeeks.co.uk

C2-Jan-Edexcel-2008

$$
A=106.71 \mathrm{~cm}^{2}
$$

