MathsGeeks

1. Simplify $(3+\sqrt{5})(3-\sqrt{5})$
2. Expand
$=9+3 \sqrt{5}-3 \sqrt{5}-5$

Therefore
$=9-5=4$
2. (a) Find the value of $8^{\frac{4}{3}}$
(b) Simplify $\frac{15 x^{\frac{4}{3}}}{3 x}$
a)
$=(\sqrt[3]{8})^{4}=2^{4}=16$
b)

$$
=5 x^{\frac{4}{3}} \cdot x^{-1}
$$

$$
=5 x^{\frac{1}{3}}
$$

3. Given that $y=3 x^{2}+4 \sqrt{x}, \quad x>0$, find
(a) $\frac{d y}{d x}$,
(b) $\frac{d^{2} y}{d x^{2}}$
(c) $\int y d x$
a) Rewrite equation

Using

$$
n x^{n-1}
$$

$$
y=3 x^{2}+4 x^{\frac{1}{2}}
$$

$$
\frac{d y}{d x}=3.2 x^{1}+4 \frac{1}{2} x^{-\frac{1}{2}}
$$

$$
\frac{d y}{d x}=6 x+2 x^{-\frac{1}{2}}
$$

b) Differentiate again

$$
\frac{d^{2} y}{d x^{2}}=6+2 .-\frac{1}{2} x^{-\frac{3}{2}}=6-x^{-\frac{3}{2}}
$$

c) To integrate using

$$
\frac{1}{n+1} x^{n+1}
$$

$$
\int y d x=3 \frac{1}{3} x^{3}+\frac{4}{3 / 2} x^{\frac{3}{2}}+c
$$

$$
=x^{3}+\frac{8}{3} x^{\frac{3}{2}}+c
$$

MathsGeeks

4. A girl saves money over a period of 200 weeks. She saves $5 p$ in Week $1,7 p$ in Week 2 , 9 p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence.
(a) Find the amount she saves in Week 200.
(b) Calculate her total savings over the complete 200 week period.
a) From the information given it is clear that $a=5 p$ and $d=2 p$.

Using $\quad u_{200}=5+199 \times 2=403 p$

$$
u_{n}=a+(n-1) d
$$

b) Using

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
S_{200}=\frac{200}{2}[2 \times 5+199 \times 2]
$$

$$
S_{200}=100[10+398]=100 \times 408=40800 p=£ 408
$$

5. Graph question

6. By eliminating y from the equations

$$
\begin{gathered}
y=x-4 \\
2 x^{2}-x y=8
\end{gathered}
$$

show that

$$
\begin{equation*}
x^{2}+4 x-8=0 \tag{2}
\end{equation*}
$$

(b) Hence, or otherwise, solve the simultaneous equations

$$
\begin{gathered}
y=x-4 \\
2 x^{2}-x y=8
\end{gathered}
$$

giving your answers in the form $a \pm b \sqrt{3}$, where a and b are integers.
a) Substitute y into second equation

$$
\begin{aligned}
& 2 x^{2}-x^{2}+4 x-8=0 \\
& x^{2}+4 x-8=0
\end{aligned}
$$

b) As there is a \pm symbol this implies it does not factorise.
Either complete the square or use

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad x=-2 \pm 2 \sqrt{3} \quad a=-2 \text { and } b=2
$$

Page $\mathbf{2}$ of $\mathbf{6}$
2007-June-C1-Edexcel
Copyright@2012 Prior Kain Ltd

MathsGeeks

Then find y

$$
y=x-4=-6 \pm 2 \sqrt{3}
$$

7. The equation $x^{2}+k x+(k+3)=0$, where k is a constant, has different real roots.
(a) Show that $k^{2}-4 k-12>0$
(b) Find the set of possible values of \boldsymbol{k}.
a) For different roots

$$
k^{2}-4(k+3)>0
$$

$$
b^{2}-4 a c>0
$$

$$
k^{2}-4 k-12>0
$$

b) Factorise

Critical values are
$(k-6)(k+2)>0$
$k=6$ or $k=-2$

As k^{2} the curve is a U shape
$k<-2$ and $k>6$
which is greater than 0 when
8. A sequence $a_{1}, a_{2}, a_{3} \ldots$ is defined by

\[

\]

where \boldsymbol{k} is a positive integer.
(a) Write down an expression for a_{2} in terms of \boldsymbol{k}.
(b) Show that $a_{3}=9 k+20$.
(c) (i) Find

$$
\sum_{r=1}^{4} a_{r}
$$

in terms of k.
(ii) Show that $\sum_{r=1}^{4} a_{r}$ is divisible by 10 .
a) Use $a_{n+1}=3 a_{n}+5 \quad a_{2}=3 a_{1}+5=3 k+5$
b) Use $a_{n+1}=3 a_{n}+5$ again
$a_{3}=3(3 k+5)+5$

$$
a_{3}=9 k+20
$$

c)

$$
\begin{aligned}
& a_{4}=3(9 k+20)+5=27 k+60+5=27 k+65 \\
& \sum_{r=1}^{4} a_{r}=a_{1}+a_{2}+a_{3}+a_{4}
\end{aligned}
$$

MathsGeeks

Therefore

$$
\begin{aligned}
& =k+3 k+5+9 k+20+27 k+65 \\
& =40 k+90
\end{aligned}
$$

(ii) Divisible by 10

$$
=\frac{40 k+90}{10}=4 k+9 Q E D
$$

9. The curve C with equation $y=f(x)$ passes through the point $(5,65)$.

Given that

$$
\begin{equation*}
f^{\prime}(x)=6 x^{2}-10 x-12 \tag{4}
\end{equation*}
$$

(a) use integration to find $f(x)$.
(b) Hence show that

$$
\begin{equation*}
f(x)=x(2 x+3)(x-4) \tag{2}
\end{equation*}
$$

(c) In the space provided on page 17 , sketch C, showing the coordinates of the points where C crosses the x-axis.

$$
\begin{align*}
& \text { 9a) } f(x)=\int f^{\prime}(x) d x \tag{3}\\
& \text { Using } \\
& \qquad \frac{1}{n+1} x^{n+1}
\end{align*}
$$

$$
f(x)=6 \frac{1}{3} x^{3}-10 \frac{1}{2} x^{2}-12 x+c
$$

$$
f(x)=2 x^{3}-5 x^{2}-12 x+c
$$

Substitute $P(5,65)$ to find

$$
\begin{aligned}
& 65=2 \times 5^{3}-5 \times 5^{2}-12 \times 5+c \\
& 65=250-125-60+c \quad c=0
\end{aligned}
$$

Therefore
$f(x)=2 x^{3}-5 x^{2}-12 x$
b) Bring out an x
$f(x)=x\left(2 x^{2}-5 x-12\right)=x(2 x+3)(x-4)$
c) Curve C crosses the x-axis at

Plot using the traditional x^{3} curve.

$$
x=0, x=-\frac{3}{2}, x=4
$$

10. The curve C has equation

$$
y=x^{2}(x-6)+\frac{4}{x} \quad x>0
$$

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $V 170$.
(b) Show that the tangents to C at P and Q are parallel.
(c) Find an equation for the normal to C at P, giving your answer in the form $a x+b y+c=$ 0 , where a, b and c are integers.
Page 4 of 6

MathsGeeks

a) Find y for $x=1$ and 2

$$
\begin{aligned}
& y=1(1-6)+4=-1 \\
& y=4(2-6)+2=-14
\end{aligned}
$$

Using

$$
P Q=\sqrt{ }(2-1)^{2}+(-14--1)^{2}
$$

$$
=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
P Q=\sqrt{1}+13^{2}=\sqrt{170}
$$

b) The gradient of tangent is

$$
y=x^{3}-6 x^{2}+4 x^{-1}
$$

$\frac{d y}{d x}=m$

At $x=1$

$$
\frac{d y}{d x}=3 x^{2}-12 x-4 x^{-2}
$$

$$
\frac{d y}{d x}=3 \times 1^{2}-12-4=-13
$$

At $x=2$

$$
\frac{d y}{d x}=3 \times 2^{2}-24-1=-13
$$

As the gradients are the same then the lines are parallel.
c) Gradient of normal $=-\frac{1}{m}=\frac{1}{13} \quad y=m x+c$

$$
y=\frac{1}{13} x+c
$$

Sub in $P(1,-1)$

$$
-1=\frac{1}{13}+c \quad c=-\frac{14}{13}
$$

Therefore

$$
\begin{aligned}
& y=\frac{1}{13} x-\frac{14}{13} \\
& 13 y=x-14 \\
& 0=x-13 y-14
\end{aligned}
$$

11. The line l_{1} has equation $y=3 x+2$ and the line l_{2} has equation $+2 y-8=0$.
(a) Find the gradient of the line l_{2}.

The point of intersection of l_{1} and l_{2} is P.
(b) Find the coordinates of P.

The lines l_{1} and l_{2} cross the line $y=1$ at the points A and B respectively.
(c) Find the area of triangle ABP.
a) Rearrange to be $y=$

$$
\begin{aligned}
& 2 y=-3 x+8 \\
& y=-\frac{3}{2} x+4 \quad \text { and so } m=-\frac{3}{2}
\end{aligned}
$$

MathsGeeks

b) Solve simultaneously

X2
$-\frac{3}{2} x+4=3 x+2$
$-3 x+8=6 x+4$
$4=9 x \quad x=\frac{4}{9}$
Find y

Coordinates are
$y=3 x+2 \quad y=3 \frac{4}{9}+2=\frac{10}{3}$
$P\left(\frac{4}{9}, \frac{10}{3}\right)$
c) When $y=1$ coordinates of A
$1=3 x+2 \quad x=-\frac{1}{3}$
When $y=1$ coordinates of B
$3 x+2-8=0 \quad 3 x=6 \quad x=2$

Area of triangle
Area $=\frac{1}{2}$ base \times height
Height is $y_{p}-1$
Base is therefore $2 \frac{1}{3}$

Area $=\frac{1}{2}\left(\frac{7}{3}\right)\left(\frac{7}{3}\right)=\frac{49}{18}$

