MathsGeeks

1. Find $\int\left(3 x^{2}+4 x^{5}-7\right) d x$
2. Using

$$
\begin{aligned}
& =\frac{3}{3} x^{3}+\frac{4}{6} x^{6}-7 x+c \\
& =x^{3}+\frac{2}{3} x^{6}-7 x+c
\end{aligned}
$$

2. (a) Write down the value of $16^{\frac{1}{4}}$
(b) Simplify $\left(16 x^{12}\right)^{\frac{3}{4}}$
a)

$$
=\sqrt[4]{16}=2
$$

b)

$$
=16^{\frac{3}{4}}\left(x^{12}\right)^{\frac{3}{4}}=2^{3} x^{\frac{36}{4}}=8 x^{9}
$$

3. Simplify

$$
\frac{5-\sqrt{3}}{2+\sqrt{3}}
$$

giving your answer in the form $a+b \sqrt{3}$, where a and be are integers.
3. Multiple by $\frac{2-\sqrt{3}}{2-\sqrt{3}}$ to remove surd from base.

$$
\begin{aligned}
& =\frac{5-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{10-2 \sqrt{3}-5 \sqrt{3}+3}{4-2 \sqrt{3}+2 \sqrt{3}-3} \\
& =\frac{13-7 \sqrt{3}}{1}=13-7 \sqrt{3}
\end{aligned}
$$

4. The point $A(-6,4)$ and the point $B(8,-3)$ lie on the line L.
a) Find and equation for the line L in the form $a x+b y+c=0$, where a, b and c are integers.
b) Find the distance $A B$, giving your answer in the form $k \sqrt{5}$, where k is an integer.
5. Find the gradient by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Therefore

$$
\begin{aligned}
& m=\frac{-3-4}{8--6}=-\frac{7}{14}=-\frac{1}{2} \\
& y=-\frac{1}{2} x+c
\end{aligned}
$$

MathsGeeks

Sub in $P(-6,4)$

$$
\begin{aligned}
& 4=-\frac{1}{2}(-6)+c \\
& 4=3+c \quad c=1
\end{aligned}
$$

Therefore

Multiply by 2

$$
y=-\frac{1}{2} x+1
$$

$$
2 y=-x+2
$$

$$
x+2 y-2=0
$$

b) The length of the line is given
by

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(8--6)^{2}+(-3-4)^{2}} \\
& =\sqrt{14^{2}+7^{2}}=\sqrt{245}=\sqrt{49 \times 5} \\
& =7 \sqrt{5} \quad k=7
\end{aligned}
$$

Therefore
5. a) Write $\frac{2 \sqrt{x}+3}{x}$ in the form $2 x^{p}+3 x^{q}$ where p and q are constants.

Given that

$$
\begin{equation*}
y=5 x-7+\frac{2 \sqrt{x}+3}{x}, \quad x>0 . \tag{2}
\end{equation*}
$$

b) Find $\frac{d y}{d x}$, simplifying the coefficient of each term.

5a)

$$
\begin{aligned}
& =\frac{2 \sqrt{x}+3}{x}=\frac{2 \sqrt{x}}{x}+\frac{3}{x}=2 \cdot x^{\frac{1}{2}} \cdot x^{-1}+3 x^{-1} \\
& =2 x^{-\frac{1}{2}}+3 x^{-1} \quad p=-\frac{1}{2} \quad q=-1
\end{aligned}
$$

b) Therefore

$$
y=5 x-7+2 x^{-\frac{1}{2}}+3 x^{-1}
$$

Using

$$
n x^{n-1}
$$

$$
\frac{d y}{d x}=5+2 \cdot-\frac{1}{2} x^{-\frac{3}{2}}-3 x^{-2}
$$

$$
\frac{d y}{d x}=5-x^{-\frac{3}{2}}-3 x^{-2}
$$

6. Graph question
7. A sequence is given by

$$
\begin{gathered}
x_{1}=1 \\
x_{n+1}=x_{n}\left(p+x_{n}\right)
\end{gathered}
$$

Where p is a constant $(p \neq 0)$.
a) Find x_{2} in terms of p.

Page 2 of 6
2008-Jan-C1-Edexcel
Copyright©2012 Prior Kain Ltd

MathsGeeks

b) Show that $x_{3}=1+3 p+2 p^{2}$

Given that $x_{3}=1$
c) find the value of p
d) Write down the value of \boldsymbol{X}_{2008}

7a)

$$
\begin{aligned}
& x_{2}=(p+1) \\
& x_{3}=x_{2}\left(p+x_{2}\right)=(p+1)(p+p+1) \\
& x_{3}=(p+1)(2 p+1)=2 p^{2}+3 p+1 \\
& x_{3}=1+3 p+2 p^{2} \\
& 1=1+3 p+2 p^{2} \\
& 3 p+2 p^{2}=0 \quad p(3+2 p)=0
\end{aligned}
$$

b)
c)

But $\mathrm{p} \neq 0$ therefore

$$
2 p=-3 \quad p=-\frac{3}{2}
$$

d) Try at few values
$x_{1}=1$
$x_{2}=(p+1)=-\frac{1}{2}$
$x_{3}=1$
$x_{4}=(p+1)=-\frac{1}{2}$
Therefore

$$
x_{2008}=(p+1)=-\frac{1}{2}
$$

8. The equation

$$
x^{2}+k x+8=k
$$

has no real solutions for x
a) Show that k satisfies $k^{2}+4 k-32<0$
b) Hence find the set of possible values of k.
8. For no real solutions

$$
b^{2}-4 a c<0
$$

Page $\mathbf{3}$ of 6
2008-Jan-C1-Edexcel
Copyright@2012 Prior Kain Ltd

MathsGeeks

Re-write equation
Therefore

$$
\begin{aligned}
& k^{2}-4(8-k)<0 \\
& k^{2}-32+4 k<0 \\
& (k-4)(k+8)<0
\end{aligned}
$$

b) Critical values at

$$
(k-4)(k+8)=0 \quad k=4 \text { or } k=-8
$$

The k^{2} curve is positive so is a U

$$
-8<k<4
$$

shape which is <0 between critical values.
9. The curve C has equation $y=f(x), x>0$ and $f^{\prime}(x)=4 x-6 \sqrt{x}+\frac{8}{x^{2}}$

Given that the point $P(4,1)$ lies on C,
a) find $f(x)$ and simplify your answer.
b) Find the equation of the normal to C at the point $P(4,1)$
9. a)

Integrate to find $f(x)$

$$
\begin{align*}
& f^{\prime}(x)=\frac{d y}{d x}=4 x-6 \sqrt{x}+\frac{8}{x^{2}} \tag{4}\\
& \frac{d y}{d x}=4 x-6 x^{\frac{1}{2}}+8 x^{-2} \\
& y=f(x)=\int 4 x-6 x^{\frac{1}{2}}+8 x^{-2} d x
\end{align*}
$$

Using

$$
\frac{1}{n+1} x^{n+1}
$$

$\frac{1}{n+1} x^{n+1}$
$y=f(x)=\frac{4}{2} x^{2}-\frac{6}{\frac{3}{2}} x^{\frac{3}{2}}+\frac{8}{-1} x^{-1}+c$
$f(x)=2 x^{2}-4 x^{\frac{3}{2}}-8 x^{-1}+c$
Put P into the equation to find c
$1=32-32-2+c$

$$
3=c
$$

b) For the normal

$$
\frac{d y}{d x}=-\frac{1}{m}
$$

$\frac{d y}{d x}=16-12+\frac{1}{2}=\frac{9}{2}$
Therefore

$$
m=-\frac{2}{9} \quad y=-\frac{2}{9} x+c
$$

Put in values for P to find c

$$
1=-\frac{8}{9}+c \quad c=\frac{17}{9}
$$

MathsGeeks

Therefore

$$
y=-\frac{2}{9} x+\frac{17}{9}
$$

Multiple by 9.

$$
9 y=-2 x+17
$$

10. The curve C has equation

$$
y=(x+3)(x-1)^{2}
$$

(a) Sketch C showing clearly the coordinates of the points where the curve meets the coordinate axes.
(b) Show that the equation of C can be written in the form

$$
y=x^{3}+x^{2}-5 x+k
$$

where k is a positive integer, and state the value of k.

There are two points on C where the gradient of the tangent to C is equal to 3 .
(c) Find the x-coordinates of these two points.

10 a) Find x when $y=0$

Note there is double root at $x=1$ which means there is a turning point. When $\mathrm{x}=0$ then Plot standard positive x^{3} curve.
b) Expand out

$$
\begin{aligned}
& 0=(x+3)(x-1)^{2} \quad x=-3 \text { and } x=1 \\
& y=(3)(-1)^{2}=3
\end{aligned}
$$

b)

$$
\begin{aligned}
& y=(x+3)\left(x^{2}-2 x+1\right) \\
& y=x^{3}+3 x^{2}-2 x^{2}+x-6 x+3 \\
& y=x^{3}+x^{2}-5 x+3 \quad k=3
\end{aligned}
$$

The gradient of the curve is $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}+2 x-5=3 \\
& 3 x^{2}+2 x-8=0 \\
& (3 x-4)(x+2)=0 \\
& x=\frac{4}{3} \text { or } x=-2
\end{aligned}
$$

Note that many questions ask for the coordinates not just the x-coordinate and so it would be important to plug back into the equation to find y.
Page 5 of 6

MathsGeeks

www.mathsgeeks.co.uk

C1-Jan-Edexcel-2008
11. The first term of an arithmetic sequence is $\mathbf{3 0}$ and the common difference is $\mathbf{- 1 . 5}$
(a) Find the value of the 25 th term.

The r th term of the sequence is 0 .
(b) Find the value of r.

The sum of the first \boldsymbol{n} terms of the sequence is Sn .
(c) Find the largest positive value of Sn .

11a) Using

$$
u_{n}=a+(n-1) d
$$

b)

$$
u_{r}=0
$$

Multiple by 2
c) As the common difference is negative each term will get smaller after $r=21$ therefore the sum up to S_{21} or indeed S_{20} as u_{21} is 0 .
Using

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

