www.mathsgeeks.co.uk C1-Jan-Edexcel-2008

1. Find
$$\int (3x^2 + 4x^5 - 7) dx$$

1. Using

$$\frac{1}{n+1}x^{n+1} = \frac{3}{3}x^3 + \frac{4}{6}x^6 - 7x + c$$

$$= x^3 + \frac{2}{3}x^6 - 7x + c$$

2. (a) Write down the value of $16^{\frac{1}{4}}$

(b) Simplify
$$(16x^{12})^{\frac{3}{4}}$$

a) $= \sqrt[4]{16} = 2$ (2)

b)
$$= 16^{\frac{3}{4}}(x^{12})^{\frac{3}{4}} = 2^3 x^{\frac{36}{4}} = 8x^9$$

3. Simplify

$$\frac{5-\sqrt{3}}{2+\sqrt{3}}$$

giving your answer in the form $a + b\sqrt{3}$, where a and be are integers.

3. Multiple by
$$\frac{2-\sqrt{3}}{2-\sqrt{3}}$$
 to remove
surd from base.
$$= \frac{5-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{10-2\sqrt{3}-5\sqrt{3}+3}{4-2\sqrt{3}+2\sqrt{3}-3}$$
$$= \frac{13-7\sqrt{3}}{1} = 13-7\sqrt{3}$$

4. The point A(-6,4) and the point B(8,-3) lie on the line L.

a) Find and equation for the line L in the form ax + by + c = 0, where a, b and c are integers.

(4)

b) Find the distance AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.

(3)

4. Find the gradient by

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Therefore
 $m = \frac{-3 - 4}{8 - -6} = -\frac{7}{14} = -\frac{1}{2}$
 $y = -\frac{1}{2}x + c$

Page **1** of **6** 2008-Jan-C1-Edexcel Copyright©2012 Prior Kain Ltd

(4)

(1)

(4)

www.mathsgeeks.co.uk C1-Jan-Edexcel-2008

Sub in P(-6,4)	$4 = -\frac{1}{2}(-6) + c$
	$4 = 3 + c \qquad c = 1$
Therefore	$y = -\frac{1}{2}x + 1$
Multiply by 2	2y = -x + 2
	x + 2y - 2 = 0
b) The length of the line is given by	$=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
Therefore	$=\sqrt{(86)^2+(-3-4)^2}$
	$=\sqrt{14^2+7^2}=\sqrt{245}=\sqrt{49\times 5}$
	$=7\sqrt{5}$ $k=7$

5. a) Write $\frac{2\sqrt{x+3}}{x}$ in the form $2x^p + 3x^q$ where p and q are constants.

Given that

$$y = 5x - 7 + \frac{2\sqrt{x} + 3}{x}$$
, $x > 0$.

b) Find $\frac{dy}{dx}$, simplifying the coefficient of each term.

5a)

$$= \frac{2\sqrt{x}+3}{x} = \frac{2\sqrt{x}}{x} + \frac{3}{x} = 2 \cdot x^{\frac{1}{2}} \cdot x^{-1} + 3x^{-1}$$

$$= 2x^{-\frac{1}{2}} + 3x^{-1} \qquad p = -\frac{1}{2} \qquad q = -1$$
b) Therefore

$$y = 5x - 7 + 2x^{-\frac{1}{2}} + 3x^{-1}$$
Using

$$nx^{n-1} \qquad \frac{dy}{dx} = 5 + 2 \cdot -\frac{1}{2}x^{-\frac{3}{2}} - 3x^{-2}$$

$$\frac{dy}{dx} = 5 - x^{-\frac{3}{2}} - 3x^{-2}$$
6. Graph question

7. A sequence is given by

$$\begin{aligned} x_1 &= 1\\ x_{n+1} &= x_n(p+x_n), \end{aligned}$$

Where p is a constant (p \neq 0). a) Find x_2 in terms of p.

Page **2** of **6** 2008-Jan-C1-Edexcel Copyright©2012 Prior Kain Ltd (2)

(4)

www.mathsgeeks.co.uk C1-Jan-Edexcel-2008

(3)

(2)

b) Show that
$$x_3 = 1 + 3p + 2p^2$$
 (1)

Given that
$$x_3 = 1$$

c) find the value of p

- d) Write down the value of x_{2008}
 - $x_2 = (p+1)$ 7a) b) $x_3 = x_2(p + x_2) = (p + 1)(p + p + 1)$ $x_3 = (p+1)(2p+1) = 2p^2 + 3p + 1$ $x_3 = 1 + 3p + 2p^2$ $1 = 1 + 3p + 2p^2$ c) $3p + 2p^2 = 0$ p(3 + 2p) = 02p = -3 $p = -\frac{3}{2}$ But p≠0 therefore $x_1 = 1$ d) Try at few values $x_2 = (p+1) = -\frac{1}{2}$ $x_3 = 1$ $x_4 = (p+1) = -\frac{1}{2}$ Therefore $x_{2008} = (p+1) = -\frac{1}{2}$

8. The equation

 $x^2 + kx + 8 = k$

has no real solutions for **x**

a) Show that k satisfies $k^2 + 4k - 32 < 0$ (3)

b) Hence find the set of possible values of k.

(4)

8. For no real solutions $x^2 + kx + 8 - k = 0$ $b^2 - 4ac < 0$ Page **3** of **6** 2008-Jan-C1-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C1-Jan-Edexcel-2008

Re-write equation

Therefore
$$k^2 - 4(8 - k) < 0$$

 $k^2 - 32 + 4k < 0$
 $(k - 4)(k + 8) < 0$
b) Critical values at $(k - 4)(k + 8) = 0$ $k = 4 \text{ or } k = -8$

The k^2 curve is positive so is a U -8 < k < 4 shape which is < 0 between critical values.

9. The curve C has equation y = f(x), x > 0 and $f'(x) = 4x - 6\sqrt{x} + \frac{8}{x^2}$

- Given that the point P(4,1) lies on C,
- a) find f(x) and simplify your answer.
- b) Find the equation of the normal to C at the point P(4,1)

(4)

(6)

9. a)

$$f'(x) = \frac{dy}{dx} = 4x - 6\sqrt{x} + \frac{8}{x^2}$$

$$\frac{dy}{dx} = 4x - 6x^{\frac{1}{2}} + 8x^{-2}$$
Integrate to find f(x)
Using

$$\frac{1}{n+1}x^{n+1}$$

$$y = f(x) = \int 4x - 6x^{\frac{1}{2}} + 8x^{-2} dx$$

$$y = f(x) = \frac{4}{2}x^2 - \frac{6}{3}x^{\frac{3}{2}} + \frac{8}{-1}x^{-1} + c$$

$$f(x) = 2x^2 - 4x^{\frac{3}{2}} - 8x^{-1} + c$$
Put P into the equation to find c

$$1 = 32 - 32 - 2 + c$$

$$3 = c$$
b) For the normal

$$\frac{dy}{dx} = -\frac{1}{m}$$

$$\frac{dy}{dx} = 16 - 12 + \frac{1}{2} = \frac{9}{2}$$
Therefore

$$m = -\frac{2}{9} \quad y = -\frac{2}{9}x + c$$

$$1 = -\frac{8}{9} + c \quad c = \frac{17}{9}$$

Page **4** of **6** 2008-Jan-C1-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk C1-Jan-Edexcel-2008

(4)

(2)

(6)

Therefore
$$y = -\frac{2}{9}x + \frac{17}{9}$$

Multiple by 9. $9y = -2x + 17$

10. The curve C has equation

$$y = (x+3)(x-1)^2$$

(a) Sketch *C* showing clearly the coordinates of the points where the curve meets the coordinate axes.

(b) Show that the equation of *C* can be written in the form

$$y = x^3 + x^2 - 5x + k$$

where k is a positive integer, and state the value of k.

There are two points on C where the gradient of the tangent to C is equal to 3.

(c) Find the *x*-coordinates of these two points.

10 a) Find x when y=0	$0 = (x + 3)(x - 1)^2$ $x = -3$ and $x = 1$
Note there is double root at x=1 which means there is a turning point. When x=0 then Plot standard positive x ³ curve.	$y = (3)(-1)^2 = 3$
b) Expand out	$y = (x+3)(x^2 - 2x + 1)$
	$y = x^3 + 3x^2 - 2x^2 + x - 6x + 3$
	$y = x^3 + x^2 - 5x + 3 \qquad k = 3$
The gradient of the curve is $\frac{dy}{dx}$	$\frac{dy}{dx} = 3x^2 + 2x - 5 = 3$ $3x^2 + 2x - 8 = 0$
	(3x-4)(x+2) = 0
	$x = \frac{4}{3} or \ x = -2$

Note that many questions ask for the coordinates not just the x- coordinate and so it would be important to plug back into the equation to find y.

Page **5** of **6** 2008-Jan-C1-Edexcel Copyright©2012 Prior Kain Ltd

www.mathsgeeks.co.uk

C1-Jan-Edexcel-2008

11. The first term of an arithmetic	sequence is 30 and the common difference is -1.5	
(a) Find the value of the 25th term		(2)
The <i>r</i> th term of the sequence is 0. (b) Find the value of <i>r</i> .		(2)
The sum of the first <i>n</i> terms of the sequence is <i>Sn .</i> (c) Find the largest positive value of <i>Sn .</i>		(2)
(c) Find the largest positive value o	1.5/1.	(3)
11a) Using $u_n = a + (n-1)d$	$u_{25} = 30 + 24 \times -1.5$	
$a_n - a + (n - 1)a$	$u_{25} = -6$	
b) $u_r = 0$	$0 = 30 + (r - 1) \times -1.5$	
	0 = 31.5 - 1.5r	

0 = 63 - 3r r = 21Multiple by 2

c) As the common difference is negative each term will get smaller after r=21 therefore the sum up to S_{21} or indeed S_{20} as u_{21} is 0.

Using

 $S_n = \frac{n}{2} [2a + (n-1)d]$

 $S_{20} = \frac{20}{2} [60 + (20 - 1) \times -1.5] = 315$