advancing learning, changing lives

Mark Scheme (Results)

November 2009

CCSE

GCSE Mathematics (Linear) - 1380
Paper: 1380/ 1F

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 08445760027 , or visit our website at www. edexcel.com.

November 2009

Publications Code UG 022423
All the material in this publication is copyright
© Edexcel Ltd 2009

1380/1F					
Question		Working	Answer	Mark	Notes
1	(a)		$13^{\circ} \mathrm{C}$	1	B1 cao
	(b)		$15^{\circ} \mathrm{C}$	1	B1 cao
	(c)		7 pm	1	B1 Accept 1900, 7
	(d)		Decreasing	1	B1 eg decreasing, downwards, falling, -4°, etc.
2		Three thousand one hundred and four.	3104 words	1	B1 for Three thousand one hundred and four.
	(b)		2500	1	B1 Accept 25 hundred
	(c)		4000	1	B1 Accept 4 thousand, thousands.
3		$27-18+15=$	24	2	$\begin{aligned} & \text { M1 } 27-18+15 \\ & \text { A1 cao } \end{aligned}$
	(b)	$24 \div 3$ or $24-3-3-3-3 \ldots$	8	2	M1 $24 \div 3$ or complete method for dividing 24 by 3 A1 cao
4	(a)		24	1	B1 cao
	(b)		20	1	B1 cao
	(c)	Friday $16=2$ wheels Saturday $28=3$ wheels (24) + $1 / 2$ wheel	F: 2 wheels S: $31 / 2$ wheels	2	B1 cao B1 cao

1380/1F					
Question		Working	Answer	Mark	Notes
5	(a) (b) (c)		$(2,4$ $(-3,1)$ $(0,-2)$ marked	1 1 1	B1 cao B1 cao B1 cao
6	(a) (b) (i) (ii)		$\begin{gathered} \hline 5,2,1 \\ 7 \mathrm{p} \\ 19 \mathrm{p} \end{gathered}$	1 2	B1 for $5,2,1$ in any order B1 cao B1 cao
7	(a) (b) (c)	$\begin{array}{lllllll} 23 & 33 & 45 & 57 & 63 & \\ -5 & -3 & 1 & 4 & 6 & & \\ 0.3 & 0.315 & 0.32 & 0.379 & 0.39 \end{array}$		1 1 1	B1 cao B1 cao B1 cao
8	(a) (b)		$\begin{gathered} 6.8-7.2 \\ \text { Cross } \end{gathered}$	1 1	B1 6.8-7.2 B1 Cross within overlay (2.8-3.2 cm from A)
9	(a) (b) (c)		5 line Reflection	1 1 1	B1 cao B1 B1 Correct reflection. Allow vertices slightly misplaced (no more than $1 / 4$ side square length)

1380/1F					
Question		Working	Answer	Mark	Notes
10	(a)	$3 \times 4+5=(3 \times 4)+5=$	17	1	B1 cao
	(b)	$8-2 \times 4=8-(2 \times 4)=$	0	1	B1 cao
	(c)	$42 \div(2 \times 3)=42 \div 6=$	7	1	B1 cao
11	(a)		25	1	B1 cao
	(b)		2000	1	B1 Accept " 2 thousand"
12	(a)	100-(25+40+20)	15\%		B1 15 or 15%
	(b)		Salt \&Vinegar		B1 Accept S\&V, $2^{\text {nd }}, 40 \%$, second OR ft from table
	(c)	$\frac{25}{100}=\frac{1}{4}$	$\frac{1}{4}$	2	B2 for $\frac{1}{4}$ (B1 for any equivalent fraction to $\frac{1}{4}, 0.25, \frac{25}{100}$)
	(d)	$\begin{aligned} & 200 \times \frac{20}{100} \text { oe, } \\ & \text { eg } 200 \times 20 \div 100,200 \div 5 \end{aligned}$	40	2	M1 for $200 \times \frac{20}{100}$ oe A1 cao SC: 40\% gets M1 A0

1380/1F					
Question		Working	Answer	Mark	Notes
13	(a)(i)		$7.0-7.5$	1	$\text { B1 } 7.0-7.5,7 \frac{1}{4}, 7 \frac{1}{2}$
	(ii)		100-120	1	B1 100-120
	(b)(i)		48-52	1	B1 48-52
	(ii)		21-25	1	B1 21-25
14			Triangle	3	B3 Fully correct: One angle and both sides, and drawn as a triangle. (B2 Two of $90^{\circ}, 8 \mathrm{~cm}, 4.5 \mathrm{~cm}$) (B1 One angle or one side) Tolerances: Angle of $90 \pm 2^{\circ}$, side of 4.5 cm drawn as $4.3-$ 4.7 cm , side of 8 cm drawn as $7.8-8.2 \mathrm{~cm}$.
15			$\frac{4}{7}$	1	$\text { B1 } \frac{4}{7} \text { oe }$
	(b)		$\frac{3}{7}$	2	M1 $\frac{3}{x}, x>3$ or $1-$ (a) oe A1 ft

1380/1F						
Question		Workin		Answer	Mark	Notes
16		$\frac{3}{8}+\frac{1}{4}=\frac{3}{8}+\frac{2}{8}=$ Or $8+12=20$	$\begin{array}{\|l\|} \hline 4 \\ \hline 12 \\ \hline 32 \\ \hline \end{array}$	$\frac{5}{8}$	2	M1 Use of common denominator: $\frac{1}{4}$ as $\frac{2 \times 1}{2 \times 4}$ or writing both fractions with a common denominator other than 8 with at least one of the fractions correct. OR $0.375+0.25$ A1 $\frac{5}{8}$ Accept 0.625 only Or M1 for sight of the addition table and $8+12(=20)$ A1 $\frac{5}{8}$
17	(a) (b)	$15 \times 6=$ $75 \div 25=$		$90 \mathrm{p}$ $3 p$	2 2	M1 15×6 or repeated addition of six 15 s or fifteen 6 s A1 cao M1 $75 \div 25$ or adds up three 25 s or subtracts three 25 s from 75 A1 cao
18	(a) (b)			$\begin{aligned} & 173160 \\ & 173.16 \end{aligned}$	1 1	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$

1380/1F					
Question		Working	Answer	Mark	Notes
19	(a)		-2,(0,2),4,6,8	2	B2 for all 4 correct values of y (B1 for 2 or 3 correct values of y)
	(b)		Line	2	B2 for correct straight line between $x=-2$ and $x=3$ (B1 for a line which passes through $(0,2)$, or a line with gradient 2, or at least 4 points from their table plotted correctly)
	(c) (i)		-1	1	B1 for $y=-1$, or $\mathrm{ft} x=-1.5$ from any portion of a straight line segment.
	(ii)		2.5	1	B1 for $x=2.5$, or ft $y=7$ from any portion of a straight line segment.
20	(a)		060°	1	B1 (0)57 ${ }^{\circ}-(0) 62^{\circ}$
	(b)		Cross C	2	B1 cross $4 \mathrm{~cm}(\pm 0.2 \mathrm{~cm})$ from B B1 cross $160^{\circ}\left(\pm 2^{\circ}\right)$ from B [SC: B1 cross 4 cm and 160° from A)
21	(a)		Reasons	1	B1 eg larger sector
	(b)			1	B1 eg don't know actual numbers
22			Graph	2	B2 complete graph (see overlay) (B1 for 4 points plotted and joined or 6 points not joined.) Note: Tolerance $\pm 2 \mathrm{~mm}$, mark graph between January and June only

1380/1F					
Question		Working	Answer	Mark	Notes
23		$\begin{array}{\|rc\|} \hline 423 & 12 \\ \times 12 & \times 423 \\ \hline 4230 & 4800 \\ \hline 846 & 240 \\ \hline 5076 & \frac{36}{5076} \\ \hline \end{array}$400 20 3 4000 200 30 800 40 6 $4000+200+30+800+40+6=5076$	5076	3	M1 for a complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 cao M1 for a complete grid with not more than 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 cao M1 for sight of a complete partitioning method, condone 1 multiplication error, addition not necessary. M1 (dep) for addition of the all the appropriate elements of the calculation A1 cao M2 for repeated addition, exactly 12 Al cao

1380/1F					
Question		Working	Answer	Mark	Notes
24	(a)		Enlarged P	2	B2 any correct enlargement (B1 at least one side drawn to a sf of 3) tol $\frac{1}{2} \mathrm{sq}$ (B 1 correct enlargement by $\mathrm{SF} \neq 3$)
	(b)	Triangle at $(-4,2),(-2,2),(-2,3)$	Reflected P		M1 reflection in any line parallel to y axis, or correct reflection in x axis. A1 cao
	(c)	Triangle at (2,-1),(3,-1),(2,-3)	Rotated Q	3	B3 fully correct (B2 correct orientation in correct quadrant or 90° anticlockwise about O) (B1 any rotation about O OR correct orientation in incorrect quadrant). SC B1 If Q is plotted correctly in all 4 quadrants then award

1380/1F					
Question		Working	Answer	Mark	Notes
25	(a)		Reasons	2	$1^{\text {st }}$ aspect: time frame $2^{\text {nd }}$ aspect: overlapping boxes (eg.'the 5 is in two places' 'the amounts overlap') $3^{\text {rd }}$ aspect: not exhaustive (eg no $<£ 1$, other) Award B2 for 2 aspects, B1 for 1 aspect
	(b)		Any 2 of $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ aspects	2	$1^{\text {st }}$ aspect: one question or responses which includes a time frame $2^{\text {nd }}$ aspect: at least 3 non-overlapping response boxes; need not be inclusive of all. 3rd aspect ; Allow for inclusion of (£)0 or use of phrase 'bigger than' oe with at least 3 response boxes Award B2 for two aspects, B1 for one aspect NB response boxes must be intervals but allow 0 on its own for the $3^{\text {rd }}$ aspect
26		$(5 \times 5) \times 6$	$\begin{aligned} & 150 \\ & \mathrm{~cm}^{2} \end{aligned}$	4	M1 for attempt to find the area of one face (eg 5×5 or 25) M1 for 6 faces with an intention to add A1 cao B1 (indep) for cm^{2} (with or without numerical answer) NB Do not accept any calculation which should lead to 125

1380/1F					
Question		Working	Answer	Mark	Notes
27			$N=4 p+20 b$	3	B3 for $N=4 p+20 b$ oe (B2 $4 p+20 b$ as an expression not in a formula Or $N=k+20 b$ oe or $N=4 p+k$ oe $k \neq 0$) (B1 for $N=c p+d b, c$ and d numerical and not both zero Or $k+20 b$ oe or $4 p+k$ oe any $k \neq 0$) SC B2 for $N=4 p+20 b$ subsequently incorrectly simplified SC B2 for $k N=4 p+20 b(k \neq 1)$ SC B1 for $4 p+20 b$ subsequently incorrectly simplified SC B1 for $N=4 p$ (space) $20 b$ or $N=4 p \times 20 b$
28		$\frac{30 \times 5}{0.2}=150 \div 0.2=750$	750-775	3	M1 For correct roundings to 1 sig fig of two or three of the figures or consistent multiples e.g 150 , or 155 or two of $30,5,0.2$ or $\frac{31 \times 500}{20}$ or $\frac{30 \times 500}{20} \text { or } \frac{30 \times 500}{21}$ Or A1 for any correct approximate expression which would give the answer after one operation e.g $\frac{150}{0.2}$ or $\frac{155}{0.2}$ or 150×5 or 30×25 or 31×25 or 155×5 or $\frac{1500}{2}$ A1 750-775 Do not accept attempts at full working out

1380/1F					
Question		Working	Answer	Mark	Notes
29	(a)		$2 y^{2}-3 y$	1	B1 $2 y^{2}-3 y$ or $2 \times y^{2}-3 \times y$
	(b)		$x(x-4)$	2	B2 $x(x-4)$ or $(x+0)(x-4)$ condone omission of final bracket (B1 x (linear in x) condone omission of final bracket) (B1 for $x-4$)
	(c)		-1,0,1,2	2	B2 cao (-1 each error or omission)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481
Email publications@linneydirect.com

Order Code UG 022423

November 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

